Крупнейшие месторождения газа в России. Бассейны газа и нефти


Нефтегазоносные бассейны мира

Введение

Предметом изучения является изучения бассейнов мира, кроме России и СНГ.

Понятия о нефтегазоносном бассейне

Все органическое вещество на планете - Увосфера (ввиде оболочки)

Увосфера

– нефтегазогеологическая провинция (приуроченная к разным тектоническим элементам) – нефтегазоносный бассейн (Волго-Уральский)

– очаг нефтегазообразования

– Месторождения и залежи

– Ловушки и покрышки.

В 1933г. появился термин НГБ (нефтегазоносные бассейны). Как тектонический элемент термин бассейн появился в 1951г. Хайн В.Е. 1951г., Брод И.О. 1953г. Брод связал процессы генерации и аккумуляции нефти и газа.

Вассоевич связал процессы осадконакопления с вертикальной зональностью нефтегазообразования. В 1970г. ввел понятия о нефтегазоносном осадочном бассейне.

Существует несколько общих эмпирических зон размещения промышленных скопления нефти и газа.

  1. УВ. Распространены в вулканогено-осадочных породах. На долю KZ-48%; MZ-22%; PZ<30%; PR<1%. Основным условие скопления нефти и газа является присутствие осадочных пород, находящихся или прошедших стадию среднего катагенеза.

  2. Нефтегазоносность – это свойство осадочного бассейна, которое появляется на определенном этапе развития. Все впадины и прогибы с мощностью осадков 3,5км. И более являются нефтегазоносными.

  3. Осадочные бассейны возникают в следствии движения ЗК. Осадочные бассейны возникают на всех этапах тектогенеза. Без всего учета геологической информации не может служить прямым признаком нефтегазоносности. Площадь бассейна не является главным критерием при оценке нефтегазоносности.

Длительность существования на платформах больше 2-х R. В складчатых областях продолжительность существования бассейна не более 2-х R.

Нефтематеринские толщи в основном аргиллиты и мергели.

Поверхность бассейна совпадает с уровнем океана.

Наиболее благоприятные условия субэквальные.

Вне бассейновое пространство (выступы кристаллических массивов, метаморфич. и магмат. пород, а также зон орогена)

Для выделения границ бассейна используют комплекс геолого-геофизических исследований. 98%залежи нефти и газа приурочена к осадочным породам.

1,5 – 2% связана с магматическими и метаморфическими породами

Нефтегазоносный басен – это область устойчивого и длительного прогибания ЗК, в процессе которого формируется осадочный комплекс (состав, строение, прогрессивный литогенез и условия залегания которого обуславливают накопления и сохранность промышленных скоплений нефти и газа.

Основные этапы развития учения о нефтегазоносных бассенов

  1. Описательно-эмпический

  2. Структурный

  3. Структурно-генетический

  4. Историко-генетический

  1. Все время до начала 20 века отсутствует научная основа нефти и газа. Считалось, что нефть там где находится ее выход. К началу 20 века уже было представление о нефти.

- происхождение нефти и газа (Ломоносов и Менделеев)

- районирование нефтегазоносных территорий

-представление о залежах с антиклинальной структурой

- попытки первых классификаций (классификация структурных скоплений ) Приурочены к песчаникам.

-представление о нефтематеринских слоях.

В середине 19 века стали бурить скв. на нефть и газ. На начало 20 века 18000 скв. и добыто чуть больше > 20 млн. тонн.

51% на Россию

41% на США

2) Связь месторождений с антиклинальными структурами получила вид научной теории (исключительно в предгорьях)

На основе этих взглядов началось масштабно-структурное геологическое картирование в предгорье.

В России в первые появилось представление об образовании нефти за счет РОВ в глинистых породах сапропеливого типа. Именно с этого этапа и возникает органическая теория происхождения нефти.

К концу этапа появляется больше данных о нефтегазоносности пластов. На юге СССР (Кубань, район грозного Ферганин).

Нефтегазообразование – историческое явление, простирающееся в пространственных и временных границах.

3) Появилось представление о распространении нефти и газа в целых континентах. Этап прогресса в нефтегазовой геологии и поисково-разведочных работах. Геология нефти и газа становится самостоятельной дисциплиной (Волго-уральская западная сибирь).

Укрепляются позиции органической теории. Более основательными становятся представления стадийности нефти и газа.

Для образования нефти необходим температурный интервал 65-200 градусов. На глубинах больше 1,5 км.

Время, необходимое для формирования залежи не менее 1 миллиона лет.

Вассаевич четко связал нефтегазообразования со стадиями литогенеза. Он показал, что на ранних и поздних стадиях катогенеза образуется газ, а на средних – нефть, а затем конденсат.

Представления о стадийности нефтегазообразования на этом этапе не имеют широкого применения.

Роль катогенеза еще не понималась, поскольку считалось, что нефть образуется на стадии диагенеза.

На этом этапе существует принцип дифференциального улавливания.

В это же время было показано, что осадочные бассейны различны в условиях платформ и складчатых областей.

В образовании бассейнов участвуют статических и динамические принципы, а в платформенном динамические.

Первые классификации нефтегазоносных бассейнах на тектонической основе.

4) с конца 60-х годов как на суше, так и на море (Западная Сибирь, Днепрово-Донецкий бассейн, западно-Туркменская и средняя Азия, район между уралом и восточной сибирью, южный мангышлак – они выходят на шельф).

Окончательно укрепились позиции с органической теорией. Было продолжено учение о нефтематеринских слоях. В кач-ве материнских пород стали пониматься любые типы породы, необходимым условием орг. Не менее 400гр/м.куб.

В 1967г. Вассаевич предложил осадочно-миграционную теорию нефтеобразования.

Появилось понятие о главной фазе нефтеобразования (ГФН) – условия, температура и давление при которых образуется максимальное кол-во нефти (60-150градусов).

В 1976 Карпович вводит понятие о главной зоне нефтеобразовании.

До МК1-МК3-газ

МК2-нефть

МК4-МК5-конденсат

Подавляющая часть запасов 198 гигантских месторождений мира сосредоточина в интервале 1,5-3 км.

От 2,4 до 3 км по отдельным бассейнам США. Доля нефтяных месторождений 45 %.

3-3,6 км – 37 % - нефть.

3,6-4,2 км – 30% - нефть.

4,2-5,8 км – 18% - нефть.

Более 5,8 км- 11% - нефть.

Стали учитывать роль катагенеза. Стадийность нефтеобразования была связан со стадийностью литогенеза.

Принципиально новый этап изучения осадочных бассейнов

В связи с появление тектоники литосферных плит, до появления тектоники плат развитие осадочных бассейнов рассматривалось как функция осадочных бассейнов (типичный статический фактор).

Были изменены границы осадочных бассейнов. В частности были обнаружены крупные залежи складчатых, надвиговых бортах бассейнов, в передовых и межгорных бассейнах.

Соответственно с этим бассейн стал рассматриваться как динамическая система с учетом горизонтальных и вертикальных движений и их обратимости во времени.

Классификация.

Все классификации разделяют на 3 группы:

  1. Тектоническая (отличие складчатых областей)

Процессы нефтегазогенерации различны. Классификация Брода 1964г.

3 типа бассейнов

-платформенные

-равнинные

-межгорные

2) тектонодинамическая (фактор определяющий характер формирования зон нефтегазонакопления)

Несмотря на качественную полноту есть существенный недостаток, применение таких классификаций не дает более высокую степень изученности бассейнов.

3)Историко-генетическая (осадко-миграционная теория)

Бассейн рассматривается как целостная система, увязаны процессы нефтегазообразования и нефтегазонакопления со стадийностью прогрессивного литогенеза. Основана на применении тектоники литосферных плит.

Особняком стоит эволюционно-тектоническая классификация нефтегазоносных бассейнов.

Типы бассейнов

Подтип

Класс

Примеры

Платформенный

Внутриплатформенный

(Интракратонный)

1.Рифтовый

2.Синеклизный

1.Днепрово-Донецкий, Красное море, Суэтский залив, Припятский, Рейнский, Шотландский, Западно-Английский.

2.Англо-Парижский, Западно-Сибирский, Мичиганский, Иллинойский, Уиллистонский, Среднерусский, Среднеамазонский, Мараньяо

Окраиноплатформенный (перикратонный)

1.Собственно-перекратонный

2.Перикратонно-орогенный

1.Мексиканский залив, Ливийско-Египетский, Арктический склон Аляски,

2.Персидский залив, Волго-Уральский, Западно-Канадский, Баренцево-Морско-Печерский, Прикаспийский.

Перикратонно-океанический

1.Рифтовый

2.Переокеанический

1.Восточно-Канадский, острова Святого Лаврентия, Камбейский, Адомский залив, Сен-Винсет.

2.Бассейн Атлантического побережья Африки и Южной Америки, (Нигерийский, Бразильский, Синегальский, Камерунский,)

Подвижных поясов

Островодужный

1.Преддуговые

2. Междуговые

3.Тыльнодуговые

1.Южно-Аляскинский, Лисий, Ятанага,Тонга, Барбадос-Тобаго, Никобарский, Курило-Камчатский, Южно-Курильский, Южно-Ханкойдинский,

2.Лусон, Вагелкон, Сулно-Алованский, Центрально-Филиппинский.

3. Южно-Охотский, Ценсу, Северо-Суматринский, Северо-Калимантанский,

Орогенный

1. Окрайно-континентальный орогенный

2.Межконтинентальный орогенный

3.Периконтинентально-океанический орогенный

4.Внутриконтинентальный орогенный

5.Переконтинентально-орогенный

1.Нортон, Андаманскй, Бристольский, Северо-Явинский, Сахалино-Охотский, Сахалино-Хайинайдский, Охотско-Камчтатский,

2.Южно-Каспийский, Венский, Паннонский.

3.Лос-Анжелес, Вентура-Санта-Барбара, Санта-Мария, Гуаякильский, Гватемальский, Южно-Чилийский.

4. Таримский, Ферганский, Джунгарский, Скалистые горы

5.Азово-Кубанский, Терсно-Каспийский, Оринокский.

Элементы районирования нефтегазоносных бассейнов. Очаги нефтегазообразования и зоны нефтегазонакопления

По площади очаг гораздо больше чем зона. Иногда площадь очага соответствует площади бассейна.

  1. Очаги нефтегазообразования.

Существует стадийность образования УВ в нефтематеринских толщах (НМТ), зависящие от температуры. В приповерхностных условиях происходит биохимические процессы и образуется метан – Зона биохимического образования метана (зона диагенеза).

При стандартных условиях осадконакопления не прерывно. Далее с глубиной нефтематеринская толща попадает в зону с высокой температурой, с глубиной температура падает образуется газ, нефть и газ, газ.

В любом осадочном бассейне выделяется несколько генетических зон:

- Зона биохимического газообразования (Т до 20 градусов). Диагенез (потенциально нефтепроизводящий)

- Верхняя зона НГО (нефтегазообразования) (соответствует Т – 20-60 градусов) Начало прото-катагенеза ПК1 – ПК3.

- Главная зона НГО (Т-60-150градусов в зависимости от типа бассейна) Мезокатагенез МК1 – МК3, от 1500-5000 км (нефтепроизводящая зона)

- Нижняя зона НГО (главная зона газообразования) (Т-150-200 град.) МК4 – МК5, Средний катагенез.

- Зона термокаталитического газообразования (Т-200-250 град.) катагенез (самая нижняя граница образованиия газов)

- Зона кислых газов (Т- выше 250 град.) метаморфизм.

Очаг нефтегазообразования – часть нефтематеринских пород находящихся с ГЗН.

С появлением очага бассейн становится газоносным.

Появление и развитие очага в пределах осадочного бассейна предопределяет создание условий нефтегазообразования, а так же переформирование и разрушение залежей УВ.

Осадочный бассейн становится последовательно газоносным, на большей глубине нефтегазоносным, затем газонефтеносным, а после газоконденсатным. (Генерируется конденсат)

Когда генетические особенности очага исчерпываются они становятся остаточно нефтегазаносными – ФОНТОМНЫМ.

В этом случае очаги вместе с бассейном разрушаются и исчезают, превращаясь либо в горные сооружения или в фундамент новых осадочных бассейнов. То есть бассейны в которых присутствует залежь УВ, но отсутствует очаг наз. Фантомные.

Положение очага в бассейне определяется рядом других факторов и связано с историей осадконакопления.

Имеет значение положение очага относительно бортов бассейна.

Они делятся на:

  • Полноочаговые (S очага большая, рифтово-грабенного типа. Н/п Лос-Анжелес) В этом случае залежи формируются путем вертикальной и ближней латеральной миграцией.

  • Ограниченноочаговые

- центральноочаговые (симметричные) очаг в наиболее прогнутой зоне (погружной)

- переферйноочаговые (ассиметричные) очаги наиболее погружены, участки смещены

а) ув мегрируют из центра к бортам

б) к одному из бортов (перекротон, бассейны)

Если очаг находящийся вблизи пологих бортов бассейна, то залежи формируются путем дальней латеральной миграцией. Если крутой борт – вертикальная миграция.

Значение имеет кол-во очагов бассейна:

- моноочаговое

- полиочаговое

(нп, Западная Сибирь)

Вывод: Наличие очага и его возможности – это определяющий фактор процесса генерации в бассейне. Бассейны начинают рассматривать по кол-ву очагов.

Зоны нефтегазонакопления – это крупные, протяженные структуры в пределах которых создаются благоприятные условия для концентрации УВ. в залежах месторождениях.

Условия формирования зон отражаются в морфологии и определяется тектоническими движениями литолого-стратиграфическими условиями накопления.

Независимо от условий в пределах образования НГМпредставляет собой приподнятый участок (блоковое движение, рифогенные массивы, перемещение платформенных тел из корневые антиклинальные структуры).

По характеру взаимоотношения осад.чехла и фундамента отличают зоны:

  1. Длительно-унаследоваемым развитием – структуры, связанные с длительным поднятием фундамента (сводовые структуры).

  2. Новообразованная – надрифтовые и авлакогеновые , развиваются на целевые, межсолевые и подсолевые (Уренгойско-Калтагорский тафрогент).

В плане зоны НГМ может быть линейно-вытянутые и изометричные (наибольшее число).

Наиболее распространенным типом зон является антиклинальный, 70% всех запасов УВ, в россии 98% из стран ближнего зарубежья.

Условия образования очагов НГО

Согласно осадочно-миграционной теории НГО сущ-ют след.основные понятия:

- НГО органически связано с литогенезом.

- НГО очень длительный и многоступенчатый процесс до 10 и 100 миллионов лет

- образование и созревание рассеянных УВ (микро нефти)

- переход микронефти в нефть

- нефть образуется в областях длительного осадконакопления (осадочный бассейн)

- нефть полистадийное, полигамное и полихромное состояние сформировывающееся в разное время.

УВ соединения обязательный компонент осадочной породы n*1014 (микронефть) / n*1012 (нефть).

НМО в процессе развития могут находится в 3-х состояниях:

- потенциальное НМ – до вхождения в ГЗН.

- нефтепроизводящее (находится в ГЗН)

- нефтепроизводившее (прошли ГЗН).

НГМ потенциально зависит от начальных условий формирования НГМТ, а также от последующих условий очага.

Выделяют внутренний и внешний факторы оценки НГМП.

Внутренний: связанный с качественными и количественными характеристиками потенциала очагов.

Внешний: связан с условием его реализации .

Внутренний фактор делится на 2 группы:

  1. Факторы, связанные с литологией

  2. Ф-ры, связанные с РОВ

Внешние факторы:

  1. Статический характер очагов и зон

  2. Динамический (определяется тепловой историей существования НМТ, скоростью прохождения зон катогенеза, длительностью существования очага).

В истории формирование очага выделяют 3 стадии:

  1. Начальная (предочаговая)

  2. Главная (генерационная)

  3. Завершающая (постоочаговая)

Начальная стадия формирования очагов НГО

Определяется тип органического вещества (гумусовое или сапропеливое), его кол-во, литолого-фациальное и палеогеографические обстановки.

Все эти факторы предопределяют величину НГМ потенциала.

Исходное ОВ, его кол-во и типы

До девона исходным материалом для формирования ОВ (фитопланктон, бактерии, бентос, водорослей, зоопланктон). Появляются наземные растения. В количественном отношении доля ОВ от фитопланктона наземных растений одинакова. За геологическую историю земли средняя скорость 1/10%.

В восстановительных условиях 4%.

Биологический продукт – освещенность, температура, соленость, до 80м.

Исходное ОВ в основном происходит из липидов или липоидов, фито и зоопланктона, бентоса, а также высших наземных растений.

ОВ: автохтонное (за счет органического вещества).

Аллохтонное (привнесенное с суши).

На фито планктон в море приходится 90% ОВ, бентоз 0,5%, 6,5 % приносится с суши.

В основном ОВ накапливается в океанах, на окраинах континента. Скорость накопления 300 гр. На м2 ОВ/год.

Во внутренних частях океана в 6 раз меньше.

Аллохтонное вещество поступает в виде речных и подземных стоков, деятельности ветра, разрушение берегов и вулканическая деятельность.

На земле ОВ распространяется очень неравномерно:

  1. ОВ связано с водоемами лагун внутренними морями.

  2. Континентальные окраины (максимальное заражение ОВ сероводородом 85-95%).

На кол-во накопившевагося ОВ влияет темп осадконакопления.

Скорость накопления:

2 – 6 мм за 1т.лет – сохраняется менее 0,01%

20-130 мм за 1т.лет – 0,1-2%

650-400 мм за 1т.лет – 11-19%

Чем больше скорость осадконакопления, тем больше кол-ва ОВ.

РОВ в осадочных породах находится в минеральном скелете.

С детритом связаны глины и глинисто-карбонатные отложения.

3 типа ОВ:

  1. Сопропелевые – образованы липоидными и полимерлипоидными компонентами, планктон 90% на Н-10%.

  2. Гумосовый – лигнит целлюлозными компонентами высших растений и углей Н-5%.

  3. Смешанный (сапропеливо-гумусовый тип)

Сапропеливый тип развит в морских глинисто-карбонатных осадках, восстановительной среды.

Гумусовый в континентальных водоемах и в прибрежно-морских условиях, песчано-глинистых осадков, окислительная среда и слабой восстановительной.

НМТ минимальное содержание ОВ для отнесения ее к нефтяной.

Для карб. Породы ≥0,20%

Для глин ≥0,30%

Нефть – глинисто-карбонатные породы с сапропелевым типом вещества

Газ – Гумусовый тип вещества.

Хемофоскилии – обязательный комплект ОВ имеет липидную природу, которая синтезируется с жив. Организмом и без изменения переходит в ископаемое состояние

Кероген – сложная макромолекула, которая генерирует УВ.

По отношению Н и О/С выделяют 3 типа керогена:

1) Высокое содержание Н и низкое о (Наиболее благ. Горючие сланцы)

2) Содержание Н высокое, ни и содержание О высокое по сравнению с 1 типом (характерны для больших морских типов толщ)

3) Низкое содержание Н, высокое О, континентальное образование, гумусовый тип УВ.

Возраст НМТ имеет очень большой от R1-N.

Литогенез глубоководных осадков и преобразование ОВ

Процесс диагенетических преобразований глубоководных осадков очень сильно растянут во времени и характеризуется своей не завершенностью по сравнению с континентальными условиями. Глубоководные фации испытывают слабое уплотнение при погружении (Парадокс глубоководного диагенеза). Взвешаный приток воды препятствует консолидации осадков. Консолидация осадка затрудняет отток седементационной влаги. Отток седементационной воды затруднен ввиду отсутствия коллектора пост разгрузки глубинных вод.

Состав будующих нефтей во многом зависит от диагенеза переработки. Чем ниже переработки тем нефти будут более цикличные(тяжелые), величина прогрева, степень тектонической активности.

В зонах совершенной тектонической активности (Альпы, Гималаи) характерные перспективы НГН за счет прогретости недр, нефть образуется на гл. 1-2 км. До вступления в ГЗН 10-20 млн.лет при условии интенсивного прогибания. В условиях низкой скорости погружения процесс созревания ОВ В НМТ может растягиваться на 100-300млн.лет.

Главная стадия очагов нефтеобразования

Увеличение Т и Р приводит дальнейшей трансформации минералов и органических составляющих НМТ. Минеральные компоненты особенно глины подвергаются уплотнению, дегидратации и различным минеральным превращением, меняются ЕФС, пластичность и минерализация вод, которые содержатся в породах.

Меняется хим. Состав ОВ, образуется УВ с более высоким содержанием Н. Отношение С к Н4 1:4, то отношение нефти 1,5-2.

В ГЗН из 1 тонны ОВ сапропелевого типа образуется 37 кг битумойдов, для гумусового – 16-19кг.

Нефтепроизводящие типы отложений с гумусовым типом вещества генерируется газ метанового состава. Генерация жидких УВ из гумусового вещ-ва образуется в огромном количестве.

Стадийность нефтегазообразования по разному протекает в глинистых и карб. породах. В карб. Протекает отлично, потому что карб. Осадок быстро превращается в породу. Генерация УВ в карб. Породах происходит при низкой Т и меньших глубинах, чем в глинистых. Миграция нефти затруднена поскольку в карб. Породах ЕФС малы и происходит значительно позже и на больших глубинах под действие Т и давления. Происходит процесс перекристаллицазии, доломитизации, сульфатизации, формирование трещенноватости и вторичной пористости.

Процессы генерации и миграции в карб. Породах разобщены во времени. Происходит консервация УВ в НМП. Главную зону нефтеобразования для образования в карб. породах возможна при более высоких Т.

Факторы катагенеза пород и органического вещества

Т, давление, геологическое время, тектонические движения – под действием всех этих факторов протекает катагенез. Протекает при Т от 30 до 200град. И давлении до 200 МПа, глубина от 100-5000м.

С катагенезом связаны наиболее благоприятные условия нефтеобразования, уплотнение глин приводящих к миграции УВ. А так же появляются наиболее оптимальные коллектора.

Температура

- ключевой фактор катагенеза.

Средняя величина геотермического градиента составляет 6,6 град. на 100м

-Тектонические процессы определяют силу

-Теплофизические св-ва

-Динамика подземных вод

-Геохимические особенности

-Магматическая активность

Величина теплового потока ни когда не остается во времени и пространстве.

Наибольшая величина геотермического градиента отличается во внутренних частях платформ. Наиболее высокие показатели – современные подвижные пояса. Степень прогрева в современных краевых прогибах и межсклонных впадин не большая Т=30 град. Чем выше Т прогрева тем быстрее толща попадает в ГЗН.

Существует разница в температурах толщ расположенных на одних глубинах в древних и молодых платформах.

В осадочном бассейне древних платформ на гл. 5км Т=100-120 град. На молодых платформах на той же глубине Т=170-210 град.

Распределение температур по глубине не соответствует степени преобразованности в породах ОВ. Если в бассейнах древних платформ степень преобразованности ОВ на больших глубинах может соответствовать апокатагенезу, то современна температура не высокая.

В молодых платформах с точностью наоборот температура недр не соответствует степени преобразованности ОВ пород.

В качестве дополнительного источника тепла в бассейнах молодых платформ, а так же межгорных складчатых поясов могут быть мощные толщи глинистых и тонкообломочных пород, которые находятся на стадии уплотнения. Процессы происходящие при уплотнении глин являются энзотермическими, температура удерживается и накапливается в глинах.

Низкая степень преобразования ОВ в условиях воздействия высоких температур может быть так же следствием высокой скорости накопления и погружения осадочных толщ.

Пример: Предкавказье майкопская свита

Быстрое накопление и погружение глинистых толщ привело к не соответствию степени катагенеза ОВ и глубин на которых они сейчас находятся. Такое быстрое погружение толщ приводит к газоносности, поскольку НМТ на определенной глубине не успевает реализовать свой потенциал.

studfiles.net

Крупнейшие месторождения газа

Однако природный газ находится под землей не только в чисто газовых месторождениях. Значительные его количества сосредоточены в угольных пластах, в подземных водах и в виде газовых гидратов.

Несчастные случаи с трагическими последствиями на угольных шахтах, как правило, связаны с метаном, содержащимся в угле. Метан находится в толще породы в сорбированном состоянии. Геологи считают, что по всем угленосным районам мира запасы метана близки к 500 трлн м³.

Метан содержится и в подземных водах. Количество растворенных газов в них превосходит все разведанные запасы газа в традиционном виде. Так, например, в пластовых водах месторождения Галф-Кост (США) растворено 736 трлн м³ метана, тогда как запасы природного газа в чисто газовых месторождениях США составляют только 4,7 трлн м³.

Еще одним крупным источником метана могут стать газовые гидраты – его соединения с водой напоминают по виду мартовский снег. В одном кубометре газового гидрата содержится около 200 м³ газа. Залежи газовых гидратов встречаются в осадках глубоководных акваторий и в недрах суши с мощной вечной мерзлотой (например, в заполярной части Тюменской области, у побережья Аляски, берегов Мексики и Северной Америки).

Как полагают ученые, 90% площади Мирового океана хранят в себе газовые гидраты. Если это предположение подтвердится, то газовые гидраты могут стать неисчерпаемым источником углеводородного сырья.

Месторождения-гиганты

Месторождения природного газа по количеству запасов классифицируют на следующие группы:

  1. Мелкие - до 10 млрд м³;
  2. Средние – от 10 до 100 млрд м³;
  3. Крупные – от 100 до 1 трлн м³;
  4. Крупнейшие (гигантские) - 1-5 трлн м³;
  5. Уникальные («супергигантские») - свыше 5 трлн м³.

Страна

Месторождение Год открытия Запасы (трлн. м³) Нефтегазовый бассейн
1. Катар / Иран Южный Парс / Северное 1991 28 Персидский залив
2. Туркмения Галканыш (Южный Иолотань) 2006 21.4 Мургаб
3. Россия Уренгойское 1966 10.2 Западная Сибирь
4. США Хейнсвиль 2008 7 Мид Континент
5. Россия Ямбургское 1969 5.2 Западная Сибирь
6. Россия Бованенковское 1971 4.9 Ямал и Карское море

Из 10 крупнейших газовых месторождений мира, начальные запасы которых на 2012 г. составляли не менее 80 трлн м³, половина находится в России.

Однако самое крупное, Южный Парс/Северное находится в территориальных водах Катара и Ирана. Запасы этого месторождения оцениваются в 28 трлн м³ газа и 7 млрд тонн нефти. На третьем месте в мире – Уренгойское нефтегазоконденсатное месторождение с общими геологическими запасами 16 трлн м³ и остаточными запасами – 10,2 трлн м³. Самое молодое месторождение первой десятки Хейнсвиль – открыто в США в 2008 г.

Заметьте, что на территории нефтегазоносного бассейна Западная Сибирь сосредоточены три крупнейших месторождения в мире – Уренгойское, Ямбургское и Заполярное.

gaz-prof.ru

Крупнейшие месторождения газа в России

Энергетика является важнейшим показателем развития каждой страны. Нехватка естественных природных ресурсов всё более заставляет учёных всего мира разрабатывать новые альтернативные источники энергии. Однако, в силу сложившихся обстоятельств на нынешнем этапе,сомнительно, что в ближайшее десятилетие обнаружится какая-нибудь замена уже существующим видам топлива. Нефть, газ, уголь и атомная энергетика будут ещё долго удерживать звание основных видов получения энергии.

Россия по праву считается одним из лидеров по разработкам, добыче и поставкам газа на мировой рынок. Природа щедро наградила её этим видом сырья. Разработано и освоено около двухсот месторождений по добыче газа и газового конденсата. Основной пик открытий месторождений пришёлся на конец шестидесятых – начало восьмидесятых лет прошлого столетия.Добыча газ в РоссииОсновные залежи были обнаружены в районах Заполярья, Северо-Западной Сибири и на дальнем Востоке.Некоторые газовые месторождения РФ являются не только крупнейшими в мире, но и уникальными.

Уренгойское

Уренгойское месторождение относится к разряду супергигантских. По количеству запасов газа оно прочно занимает третье место на планете. Шестнадцать триллионов кубометров – примерно так оценивается объём газа, который оно способно выдать. Впервые месторождение было обнаружено в Ямало-Ненецком автономном округе в 1966 году, недалеко от посёлка Уренгой. Уже в семьдесят восьмом начала производиться капитальная добыча, а с 1984 года газ Уренгоя стал поставляться в западные страны.

Уренгойское месторождение

На сегодняшний день выработано немного меньше 70 процентов всех подземных запасов. Но разработки не теряют своей интенсивности. Так, в прошлом году были построены и пущены в ход новые мощные насосные станции, который позволяют увеличивать добычу и транспортировку газа из этого региона. С 2009 года ведётся разработка Ачимовских слоёв Уренгойского месторождения, что даёт возможность получать больше 90 процентов газового конденсата.

Ямбургское

Ямбургское имеет запасы примерно в 8.2 триллиона кубометров газа и относится к крупнейшим мировым месторождениям. Открытие приходится на 1969 год на полуострове Тазовский в Ямало-Ненецком АО. В восьмидесятом году газ этого месторождения стал добываться в промышленных масштабах.

Ямбургское месторождение

По последним данным разработано около сорока шести процентов всего объёма газа. К особенностям ямбурскоо месторождения можно отнести добычу газа в условиях вечной мерзлоты, толщина промёрзшей земли доходит до 40 – 50 метров. Бурение производится на глубину от 1 до 3 км.

Бованенковское

Бованенковское месторождение по запасам газа также не уступает многим мировым. 4,9 триллиона кубометров – такая цифра, по подсчётам специалистов, характеризует его объём. 1971 год стал открытием этих запасов газа на полуострове Ямал. По тем или иным причинам добыча газа из этого месторождения постоянно переносилась с 2001 года. После начала постоянной добычи в 2012 году начало активно поставлять газ на экспорт.

Бованенковское месторождение

Основным получателем сырья является Китай. В 2014 году введён в эксплуатацию второй по счёту газовый промысел. Это позволяет увеличить добычу до 90 млрд кубометров газа в год. Бованенковское месторождение можно смело назвать перспективным.

Штокмановское

Штокмановское месторождение по праву входит в число самых богатых по запасам газа и газового конденсата. Объёмы газа и конденсата, находящихся там, исчисляются цифрами в 3,94 триллиона кубометров и 56 миллионов тонн соответственно. Впервые было обнаружено в 1981 году.

Штокмановское месторождение

Первая пробная добыча произведена в 1988 году. Находится в Баренцевом море, между Мурманском и Новой землёй. Глубины моря от 300 до 400 метров. Сроки пуска месторождения на полную мощность постоянно переносятся. Последние данные указывают на 2019 год.

Ленинградское

Ленинградское газоконденсатное месторождение, как и многие другие, было открыто в девяносто втором году прошлого века. По предполагаемым запасам сразу же получило звание – гигантское. По последним данным количество газа, находящегося там может быть около 3 трлн кубометров. Залежи конденсата оцениваются примерно в 3 млн тонн. Расположение приходится на юго-западную часть Карского моря.

Ленинградское месторождение

Русановское

Русановское газовое месторождение относится к числу уникальных. Открытие приходится на 1992 год. Расположено на континентальном шельфе Северо Западной платформы. Карское море. Запасы оцениваются 779 млрд тонн газа, однако, есть предположение, что эта цифра может достигать трёх триллионов кубических метров и 7.8 млн тонн газового конденсата. Основные разрабатываемые запасы находятся на глубинах от полутора до двух с половиной километров.

Заполярное

Заполярное газоконденсатное месторождение было открыто в 1965 году между Уренгоем и посёлком Тазовский. По запасам газа относится не только к крупнейшим месторождениям в России, но и занимает пятое место в мире. Начальные запасы были определены в 2,6 трлн кубометров. Запуск в эксплуатацию произошёл в 2001 году.

Заполярное месторождение

Медвежье

Медвежье газовое месторождение относится не только к крупнейшим, но и является уникальным. Открыто в 1967 году. С 1972 года находится в постоянной эксплуатации. Располагается в Ямало-Ненецком округе. Начальнае запасы газа были оценены в 4,7 триллиона кубометров. На сегодняшний день выработано почти вполовину.

Медвежье месторождение

По количеству добываемого газа это месторождение выдаёт около четырёх процентов всей газовой добычи России. Несмотря на значительную выработку, обусловленную природными особенностями, может получить «второе дыхание» к 2030 году. Об этом говорят работы по модернизации оборудования и усовершенствовании добычи газа, которые будут окончены в 2017 году.

Астраханское

Астраханское месторождение газа берёт своё начало с 1976 года. Оно было обнаружено рядом с Астраханью и вошло в состав Прикаспийского района разработок нефти и газа. Предполагаемые запасы: 2,5 трлн кубических метров газа и 400 миллионов тонн конденсата. Эксплуатация в полном масштабе началась в 1987 году. В 2014 в под Астраханью найдено ещё одно крупное месторождение газа. Открытие, сделанное впервые за последние 20 лет, говорит о том, что этот район ещё богат сюрпризами.

Астраханское месторождение

Сахалин-3

Сахалин-3 – это перспективный проект по освоению и разработки нескольких крупных газовых месторождений, открытых и открываемых с конца семидесятых годов прошлого века в Тихом океане, восточнее острова Сахалин. Основными считаются Киринское, Южно-Киринское и Мынгинское газовые месторождения. Планируется произвести добычу газа на уровне 1,1 млрд кубических метров газа. Начальные запасы месторождения — 162,5 млрд.куб.м. газа.

Сахалин-3

vivareit.ru

УСЛОВИЯ ЗАЛЕГАНИЯ В ПРИРОДЕ И ПРОИСХОЖДЕНИЕ

НЕФТЬ: УСЛОВИЯ ЗАЛЕГАНИЯ В ПРИРОДЕ И ПРОИСХОЖДЕНИЕ

В. Е. ХАИН

Нефть и сопровождающий ее или встречающийся отдельно природный горючий газ являются важнейшими полезными ископаемыми. В XX веке они стали по существу "кровью" народного хозяйства, без них было бы немыслимо функционирование таких важнейших отраслей, как энергетика, транспорт, производство жизненно важных материалов. Поэтому по аналогии с каменным, бронзовым, железным веками, пережитыми человечеством на ранней стадии развития его цивилизации, минувший XX век может быть назван нефтяным веком (XIX век был угольным, а XXI век, вероятно, станет газовым). В настоящее время экспорт нефти и газа составляет около 40% всего экспорта России.
Нефть – это смесь природных углеводородов, изменчивая по составу и плотности, но обычно более легкая, чем вода. Углеводороды могут встречаться в природе и в твердом виде, в виде битумов, но крупные залежи последних относительно редки. Гораздо распространеннее углеводородные газы, состоящие в основном из наиболее легкого компонента – метана СН4. В определенных условиях температур и давлений газ выделяет растворенные в нем нефтяные углеводороды в виде газоконденсата – жидкости, более легкой и светлой, чем нефть, и поэтому легче поддающейся переработке. Все это природное углеводородное сырье имеет сходное происхождение и встречается либо совместно, либо в близком соседстве.

НЕФТЬ И ГАЗ В ОСАДОЧНОЙ ОБОЛОЧКЕ ЗЕМЛИ

Промышленные скопления нефти, газа и газоконденсата встречаются почти исключительно в верхней, осадочной оболочке земной коры. Изредка их обнаруживают в вулканических (базальты), интрузивно-магматических (граниты) или метаморфических (гнейсы) породах. Залежи нефти и газа находят практически во всех типах осадочных горных пород, но преимущественно в песках, песчаниках, известняках, доломитах, поскольку они отличаются повышенной пористостью и представляют естественные вместилища – коллекторы, резервуары жидких и газообразных углеводородов. Но и более плотные породы – глины, плотные карбонаты могут представлять такие коллекторы, если они достаточно трещиноваты. Общей особенностью осадочных толщ, вмещающих залежи нефти, является их субаквальное происхождение, то есть отложение в водной среде. Первоначально представлялось, что такие толщи должны были обязательно отлагаться в морских условиях, но после открытия крупных залежей нефти в континентальных-озерных, дельтовых отложениях в Китае стало очевидно, что среда осадконакопления должна была быть водной, но не непременно морской.

К середине XX века выяснилось еще одно обязательное условие – нефтесодержащие толщи должны обладать некой минимальной мощностью (толщиной), около 2-3 км. Толщи такой мощности обычно накапливались в крупных впадинах земной коры, поскольку их накопление и сохранение требовали длительного и устойчивого опускания соответствующих участков коры. Такие впадины в 50-е годы XX века в США (В. Пратт, Л. Уикс) и СССР (И.О. Брод, В.В. Вебер, автор этих строк) стали выделяться в качестве нефтегазоносных бассейнов. Возникло учение о нефтегазоносных бассейнах, успешно развивающееся и в настоящее время.

Классификация нефтегазоносных бассейнов до 70-х годов XX века строилась на основе геосинклинально-орогенно-платформенной концепции. Под геосинклиналями понимали глубокие прогибы земной коры, заполнявшиеся толщами осадков и вулканических пород и преобразованные затем в складчатые горные сооружения – орогены. Последние после своего нивелирования денудацией (размывом) превращаются в фундамент устойчивых глыб коры – платформ, частично перекрываемых осадочным чехлом. Но в конце 60-х годов появилась новая геологическая концепция – концепция тектоники литосферных плит, которая быстро завоевала широкое признание. В связи с этим и классификация нефтегазоносных бассейнов была переведена на новую основу (рис. 1).

Согласно теории тектоники плит, верхняя часть твердой Земли, до глубины около 200-300 км, разделяется на хрупкую верхнюю оболочку – литосферу и подстилающую ее относительно пластичную астеносферу. Литосфера Земли разделена на ограниченное число крупных и среднего размера плит, на границах которых сосредоточена основная тектоническая, сейсмическая и магматическая активность. Границы плит бывают троякого рода: дивергентные, вдоль которых происходят их расхождение, образование новой базальтовой коры и океанских бассейнов; конвергентные, вдоль которых плиты сближаются, надвигаясь друг на друга, и, наконец, трансформные, вдоль которых они смещаются друг относительно друга в горизонтальном направлении по вертикальным разломам.

Дивергентные границы зарождаются в пределах континентальных частей литосферных плит в виде рифтовых систем – глубоких щелей, все больше раскрывающихся под действием растяжения и подъема с глубины астеносферного выступа – мантийного диапира. Над рифтами образуются впадины, в которых начинают накапливаться сначала континентальные (речные, озерные), а затем уже морские отложения. В основании рифтов происходят утонение коры и всей литосферы, подъем нижележащей подплавленной астеносферы и частичное внедрение в литосферу выделившейся из нее базальтовой магмы. В дальнейшем остывание астеносферного выступа и внедрившихся в литосферу магматитов ведет к расширению и ускоренному опусканию надрифтовой впадины (рис. 2). Опусканию дна способствует и давление толщи накопившихся в ней осадков. Так образуется один из типов нефтегазоносных осадочных бассейнов – внутриплитный, наиболее крупным и ярким представителем которого является Западно-Сибирский бассейн.
Континентальный рифтинг при более интенсивном растяжении сопровождается разрывом континентальной коры и переходит в так называемый спрединг, то есть заполнение образовавшегося раздвига новообразованной, выделившейся из астеносферы океанской корой с постепенным расширением занятого ею пространства и превращением его в ложе океана. При этом плечи континентального рифта превращаются в так называемые пассивные (относительно асейсмичные, авулканические) окраины континентов, обрамляющие новорожденный океан. Они становятся основной областью накопления осадков, сносимых с континента, особенно в дельтах крупных рек, впадающих в океан. По выражению известного литолога-океанолога А.П. Лисицына, это область лавинной седиментации, мощность осадков здесь достигает 15-20 км. Таким образом, на пассивных окраинах континентов возникают крупные нефтегазоносные бассейны. В России это Волго-Уральский и продолжающий его к северу Тимано-Печорский бассейны. Когда в пределах смежной части океана возникают складчатые горные сооружения, они надвигаются на край такого бассейна, который испытывает дополнительное интенсивное погружение и превращается в передовой (предгорный) прогиб этого сооружения. Таковы Предуральский, Предкавказские, Предкарпатский и другие подобные прогибы, также представляющие особый тип нефтегазоносных бассейнов.

Активные окраины континентов в ходе своего развития испытывают сжатие, благодаря которому островные дуги сливаются друг с другом и в конечном счете образуют горные сооружения, надвигающиеся на соседний континент (или континенты, если океан испытывает полное замыкание), о чем говорилось выше. Но между отдельными сооружениями нередко возникают межгорные впадины, подобно Куринской впадине между Большим и Малым Кавказом или Паннонской (Венгерской) между Карпатами и Динарскими горами, которые также заполняются мощными осадками и являются нефтегазоносными бассейнами.

Сжатие, проявляющееся на конвергентных границах плит и ведущее к образованию сложно построенных горных сооружений, подобных Кавказу, Альпам или Гималаям, нередко распространяется далеко в глубь континентов, в области, которые давно утратили тектоническую активность, покрылись практически ненарушенным осадочным чехлом и представляли собой так называемые платформы. При этом кора таких платформ начинает коробиться, испытывая поднятия и погружения с образованием горных сооружений и межгорных впадин, последние опять-таки являются нефтегазоносными осадочными бассейнами. Этот процесс внутриконтинентального орогенеза (горообразования) наиболее ярко проявился в Центральной Азии, и именно здесь находятся такие бассейны, как Ферганский, Таджикский, Джунгарский, Таримский.

Таковы основные типы нефтегазоносных бассейнов. Возникает вопрос: как же образуются нефть и газ в осадочных бассейнах?

ПРОИСХОЖДЕНИЕ НЕФТИ И ГАЗА. НЕФТЕ- И ГАЗОМАТЕРИНСКИЕ ТОЛЩИ

В отличие от другого горючего ископаемого – угля, происхождение которого достаточно очевидно благодаря находкам отпечатков листьев и даже целых окаменевших стволов деревьев и было разгадано еще М.В. Ломоносовым, происхождение нефти долгое время было предметом жарких споров, которые полностью не затихли и в наши дни. Существуют две противоположные версии происхождения нефти: неорганическая и органическая. Выбор между этими версиями осложняется тем, что нефть и газ – весьма подвижные вещества-флюиды, они способны к перемещению – миграции внутри земной коры и ее осадочной оболочки на большие расстояния, и их скопления нередко находятся достаточно далеко от предполагаемого места образования.

Неорганическая гипотеза происхождения нефти была относительно наиболее популярной в СССР, где ее отстаивали две научные школы – в Санкт-Петербурге (тогда Ленинграде) во главе с Н.А. Кудрявцевым и Киеве во главе с В.Б. Порфирьевым. Адепты этого направления опирались на авторитет Д.И. Менделеева, который высказал предположение о том, что нефть могла образоваться при воздействии воды на карбид железа. Главными же геологическими фактами, легшими в основу построений "неоргаников", было нахождение некоторых залежей нефти в вулканических, интрузивно-магматических и метаморфических породах. Такие залежи действительно существуют. Особенно показателен пример крупного скопления нефти в трещиноватых и выветрелых гранитах на месторождении "Белый тигр" на юге Вьетнама, в дельте Меконга.

С позиций противоположной, органической концепции генезиса нефти все такие залежи – результат миграции нефти из смежных осадочных пород. Но следует признать, что углеводороды в принципе могут иметь в природе и неорганическое происхождение – иначе как объяснить их присутствие в метеоритах и атмосфере некоторых планет и их спутников, а также выделение метана в рифтовых зонах срединно-океанических хребтов, практически лишенных осадков. Однако все эти местонахождения представляют лишь научный интерес, а речь должна идти о залежах промышленного значения.

Противники "неоргаников" приводили в качестве доводов в пользу органического происхождения присутствие в нефтях спор и пыльцы растений и специфических органических соединений – порфиринов. Однако "неорганики" объясняли все это заимствованием из вмещающих залежи осадочных пород. Решающее доказательство органического происхождения нефти принесли данные органической геохимии, установившие тождество нефтяных и биогенных углеводородов на молекулярном уровне. Молекулы таких органических соединений получили название "биомаркеров", то есть меток, указывающих на биогенное происхождение данной нефти. Несмотря на это, отдельные исследователи как в нашей стране, так и за рубежом продолжают отстаивать неорганическое происхождение нефти. Соответствующие взгляды высказывались совсем недавно на страницах журнала "Эксплорер", издаваемого авторитетной Американской ассоциацией геологов-нефтяников. А в Швеции была даже пробурена довольно глубокая скважина в кристаллических породах Балтийского щита, но никаких притоков нефти получено не было.

В общем по всей сумме накопленных фактов достаточно обоснованной может считаться лишь концепция органического, биогенного происхождения нефти, выдвинутая немецким ботаником Г. Потонье в начале XX века. В нашей стране она была разработана Г.П. Михайловским, И.М. Губкиным, но наиболее полно и на современном уровне Н.Б. Вассоевичем, который назвал ее осадочно-миграционной теорией нефтеобразования. Согласно этой теории, источником нефти является захороненное в осадках органическое вещество – продукт разложения организмов, – отлагающееся вместе с минеральными частицами осадков.

В свою очередь, источником этого органического вещества являются две группы организмов: наземная растительность, остатки которой сносились реками в морские или озерные бассейны, бактерии и морской зоо- и фитопланктон, причем именно последнему принадлежит главная роль в нефтеобразовании.

Различия в составе органического вещества, отложенного из двух этих источников – гумуса и сапропеля, прослеживаются в составе нефтей, возникших за их счет. Накопление значительных масс органического вещества в осадках было возможно в условиях отсутствия или ограниченного доступа свободного кислорода, что могло происходить лишь в водной среде.

Органическое вещество находится в осадках в рассеянном состоянии. Одни типы осадков им обогащены в большей степени, другие – в меньшей или даже практически его лишены, но среднее содержание очень редко превосходит 1% от массы осадка. И лишь относительно небольшая часть этого вещества (10-30%) затем преобразуется в нефть, остальная сохраняется в осадке и переходит в образующуюся из него осадочную породу. Более всего обогащены органическим веществом темные глинистые толщи типа олигоцен-миоценовой майкопской серии Кавказа, девонского, так называемого доманика Волго-Уральского и Тимано-Печорского бассейнов. Именно их долго рассматривали как классические нефтепроизводящие или нефтематеринские толщи. Однако в дальнейшем выяснилось, что свойством продуцировать нефть обладали и другие типы осадочных формаций, в частности карбонатные.

Преобразование исходного органического вещества в нефть – процесс длительный, сложный и еще до конца непонятый. Известно, что углеводороды нефтяного ряда образуются уже в телах живых организмов и их обнаруживают в современных осадках. Однако, как показал Н.Б. Вассоевич, процесс идет очень медленно, пока осадки не погрузятся на глубину более 2 км, будучи перекрыты более молодыми слоями, и не нагреются до 80-100°C. Лишь тогда наступит главная фаза нефтеобразования. На большей же глубине, порядка 6 км, и при более высокой, более 120°C температуре вместо нефти начнет образовываться газ (рис. 3).

По более современным представлениям (Ш.Ф. Мехтиев, Б.А. Соколов) нефтеобразованию существенно способствуют (кроме погружения и роста температуры с глубиной) поступающие из мантии флюиды. Это особенно заметно в молодых рифтогенных бассейнах типа Суэцкого залива Красного моря, но должно было играть большую роль на ранней стадии развития и более древних бассейнов вроде Западно-Сибирского. В этом смысле можно признать, что в представлениях "неоргаников" было хотя и небольшое, но зерно истины – глубинный эндогенный фактор принимает определенное участие в процессе нефте- и газогенерации. А так как действие этого фактора во времени проявляется неравномерно, отдельными импульсами, то и генерация углеводородов может протекать не в одну фазу, а в несколько таких фаз, как недавно отметил украинский ученый А.Е. Лукин.

Но по существу процесс нефтеобразования завершается лишь тогда, когда капли нефти начнут собираться в более крупные скопления. А это происходит только при отжимании нефти вместе со связанной водой из материнской породы под весом вышележащих слоев, напором газа и при ее переходе в пористые породы-коллекторы, в частности пески и песчаники.

Коллекторы могут находиться в тонком переслаивании с материнскими глинами, а иногда сами глины, если они достаточно трещиноваты, могут служить коллекторами новообразованной нефти. Примерами являются залегающая в кровле юры баженовская свита Западной Сибири или миоценовая свита монтерей Калифорнии. Однако гораздо чаще коллекторы залегают выше по разрезу осадочного бассейна, чем нефтематеринская толща, или замещают ее по простиранию, например пермские кавернозные рифовые карбонаты Предуральского прогиба. Здесь речь идет уже о миграции нефти из нефтематеринской толщи в толщу, содержащую коллекторы – вертикальной или латеральной.
Необходимо иметь в виду, что вместе с нефтью и даже раньше нее из материнской породы отжимается и вода, притом в неизмеримо больших количествах. А породы-коллекторы обязательно являются водоносными. Вода может иметь в них различное происхождение – она может захороняться вместе с осадками (погребенные воды) или проникать с поверхности на выходе пластов на эту поверхность (инфильтрационные воды). Все нефтегазоносные осадочные бассейны, как подчеркнул И.О. Брод, являются одновременно артезианскими, и нефть и газ перемещаются, мигрируют не сами по себе, а вместе с водой, нефть по существу первоначально в виде нефтеводной смеси (капли нефти в воде). Но вскоре происходит отделение нефти и газа от воды, вследствие более низкого удельного веса нефть всплывает над водой и скапливается в залежи, стремясь занять в пласте-коллекторе наиболее высокое гипсометрическое положение. Это тем более относится к газу и газоконденсату, но о происхождении газа следует сказать особо.

Диапазон глубин газообразования гораздо шире, чем у нефти, а его источником могут являться не только вещества органического происхождения, захороненные в субаквальных осадках, но и вещества, получающиеся в результате углефикации наземной растительности. Залежи газа, продуцированного угленосной толщей среднего карбона, известны в верхнем карбоне и нижней перми в южной части Северного моря и других районах. Выделения метана наблюдаются практически во всех угленосных толщах, и его взрывы в шахтах нередко имеют катастрофические последствия. Образование метана начинается уже в болотах, а промышленные залежи газа выявлены в очень молодых, плиоцен-четвертичных осадках. Газообразование продолжается и на больших глубинах, но, как отмечалось выше, его главная фаза приходится на область более высоких температур, чем главная фаза нефтеобразования (см. рис. 2). В последнее время в Скалистых горах США обнаружены скопления газа в слабопроницаемых отложениях верхов мела, их называют нетрадиционными, к ним относятся и упомянутые выше глинистые толщи. Следует упомянуть наконец о широком распространении в осадочных толщах морей и океанов и придонном слое осадков залежей газогидрата – сжиженного и замерзшего растворенного в воде газа.

Необходимым условием сохранности сформированной залежи нефти или газа является наличие над пластами-коллекторами непроницаемых или слабопроницаемых пород – флюидоупоров, в просторечии обычно называемых покрышками. Наилучшими флюидоупорами служат соленосные образования. Развитию таких образований нижнепермского, кунгурского возраста обязаны своей сохранностью гигантские залежи газа, конденсата и нефти в массивных карбонатах – карбонатных платформах на периферии Прикаспийской впадины (Астраханское, Оренбургское, Тенгизское месторождения). Но гораздо чаще роль покрышек выполняют глинистые пачки и свиты. Таким образом, нефтегазоносные комплексы состоят из нефтематеринских толщ, коллекторов и покрышек.

ЗАЛЕЖИ НЕФТИ И ГАЗА И ИХ ТИПЫ

Всплывая над водой в коллекторе, нефть и газ движутся в наклонных (достаточно очень слабого наклона, наблюдаемого на равнинно-платформенных территориях) пластах вверх по их восстанию до того места, где они встретят какое-либо препятствие этому перемещению. Таким препятствием может быть обратный перегиб пластов в своде складки, и тогда именно здесь локализуется залежь нефти, а над ней нередко "газовая шапка", или самостоятельная залежь газа, часто с оторочкой газоконденсата. Такие сводовые (или антиклинальные) залежи относятся к числу самых распространенных (рис. 3). В начале развития нефтегазовой геологии антиклинальная теория залегания нефти вообще считалась общепринятой. Залежи подобного типа были широко известны на Кавказе – в Азербайджане, Грозненском районе, Дагестане, Западной Туркмении, а затем были открыты в Волго-Уральской области, Западной Сибири в очень пологих платформенных поднятиях, а также на Сахалине.

Однако вскоре было обнаружено, что сводовые антиклинальные ловушки – это не единственный тип ловушек для залежей нефти и газа. Препятствием для дальнейшей латеральной миграции углеводородов могут служить плоскости тектонических разрывов, по которым пласты-коллекторы упираются в малопроницаемые породы. В результате перед ними образуются тектонически экранированные залежи, также достаточно распространенный их вид. Но часть флюидов может при этом уходить вверх по поверхностям разрывов (вертикальная миграция) и образовывать залежи уже в вышезалегающих коллекторах. Кроме того, именно по разрывам нефть и газ могут выходить на поверхность. Первоначально нефть добывали колодцами на таких выходах, что дало повод еще до появления антиклинальной теории связывать залежи нефти с тектоническими разрывами. Эти же естественные нефтепроявления долго служили единственным поисковым признаком.

Как сводовые, так и тектонически экранированные залежи относятся к разряду структурных. Но уже в 30-е годы XX века стали известны ловушки для залежей двух принципиально иных типов: стратиграфические и литологические (рис. 4). Первые из них связаны с выклиниванием пластов-коллекторов или их срезанием поверхностями несогласий, перекрытыми слабопроницаемыми породами. Вторые – с замещением коллекторов на том же стратиграфическом уровне слабопроницаемыми породами. Особый тип ловушек составляют гидравлически экранированные ловушки, когда залежь удерживается, нередко в сильно наклонном положении, встречным напором пластовых вод.

Залежи даже разного типа могут оказаться сосредоточенными на одном и том же участке в пределах одного и того же структурного элемента, чаще всего антиклинали, находясь на разной глубине. Это и есть нефтяные, нефтегазовые и газовые месторождения, которые являются многопластовыми. Пласты коллекторов, вмещающие залежи, здесь разделены горизонтами пород-флюидоупоров, например песчаники или известняки пачками глин или мергелей. В других случаях встречаются массивные залежи, отличающиеся большой высотой. Такие залежи чаще всего приурочены к крупным рифовым массивам или погребенным выступам трещиноватых и / или выветрелых магматических (граниты) или метаморфических пород. Выше уже был приведен показательный пример крупного месторождения "Белый тигр" во Вьетнаме.
Нужно отметить некую общую тенденцию, наблюдаемую при анализе развития нефтегазовой геологии. Это непрерывное расширение диапазона разновидностей нефтематеринских отложений, пород-коллекторов углеводородов, типов ловушек для скопления нефти и газа.

Совершенно очевидно, что эта тенденция способствует увеличению разведанных запасов углеводородного сырья и расширению перспектив поисков новых его месторождений. Именно благодаря этому мрачные прогнозы относительно близкого истощения запасов нефти всякий раз оказываются несостоятельными. И наконец, следует иметь в виду, что при современных методах добычи нефти из недр извлекается меньше половины ее запасов. Совершенствование этих методов позволит добыть часть нефти, оставшейся в недрах старых месторождений.

ГЕОГРАФИЯ МЕСТОРОЖДЕНИЙ НЕФТИ И ГАЗА

Распределение месторождений нефти и газа на поверхности Земли очень неравномерно (рис. 5). Заведомо лишены промышленных залежей абиссальные равнины океанов и срединно-океанические хребты, кристаллические щиты древних платформ с выходами на поверхность глубокометаморфизованных пород докембрия, осевые зоны складчато-покровных горных сооружений, сложенные интенсивно дислоцированными и в той или иной степени метаморфизованными толщами пород. Но уже в последнем случае следует сделать оговорку: по периферии таких сооружений под тектоническими покровами кристаллических пород нередко обнаруживают неметаморфизованные и нефтегазосодержащие толщи, ярким примером могут служить Скалистые горы Канады и США.

Уже достаточно давно нефть и газ добывают не только на суше, но и в море, начало чему было положено на Каспии и в Мексиканском заливе. При этом в поисках залежей нефти бурение уходит на все большие глубины моря; чемпионом в этом отношении является Бразилия, где добычу ведут уже на глубине более 1700 м. Открытие месторождений нефти и газа в Северном море превратило Великобританию и Норвегию из потребителей нефти и газа в ее экспортеров.

Богатейшим нефтегазоносным регионом в масштабе всей планеты является регион Персидского залива. Благодаря открытию огромных залежей нефти страны аравийского побережья залива, прежде безжизненно-пустынные и населенные редкими кочевыми племенами, теперь покрыты зелеными оазисами с белокаменными городами и за короткий срок достигли значительного процветания. Двумя другими крупнейшими нефтегазоносными бассейнами являются Западно-Сибирский бассейн, благодаря запасам газа которого Россия занимает первое место в мире, и бассейн Мексиканского залива (США, Мексика). Остальные бассейны показаны на рис. 5.

Основные ресурсы нефти и газа сосредоточены в относительно молодых, мезозойских и кайнозойских отложениях, образовавшихся за последние 200 млн лет истории Земли. Однако добыча нефти и газа ведется и из палеозоя, а в Восточной Сибири залежи нефти в еще более древних отложениях верхнего протерозоя, что неудивительно, так как они богаты органикой, в основном водорослевого происхождения. Поэтому можно ожидать, что добыча нефти и газа будет "прирастать" и протерозоем.

Автор благодарен О. Баженовой и В. Сойферу за ценные замечания.

Рецензенты статьи В.А. Королев, М.Г. Ломизе

* * *

Виктор Ефимович Хаин, доктор геолого-минералогических наук, профессор кафедры динамической геологии МГУ, действительный член РАН. Лауреат государственных премий СССР и РФ. Область научных интересов – строение и развитие земной коры континентов и океанов. Автор более 30 монографий и учебников и более 700 научных статей. Источник: Соросовский Образовательный Журнал http://www.inauka.ru/earth/article75115.html

Интересно почитать

ecoteco.ru

Наиболее крупный бассейн - Большая Энциклопедия Нефти и Газа, статья, страница 1

Наиболее крупный бассейн

Cтраница 1

Наиболее крупные бассейны - Петрошанский и Команешти. Уголь содержит 12 % влаги, 36 % летучих и 3 - 4 % серы; теплота сгорания его 6100 - 7200 ккал / кг. В бассейне Команешти известны 34 пласта, из них только пять имеют промышленное значение.  [1]

Наиболее крупными бассейнами являются бассейн Мексиканского залива, Арктического склона Аляски, Ливийско-Египетский, Северо-Черноморский. Бассейн Мексиканского залива расположен на переработанной окраине Северо-Американского континента.  [3]

Наиболее крупным бассейном из числа эксплуатируемых является Канско-Ачинский буроугольный ( - 1200 млрд. т) в Красноярском крае, где пласты угля толщиной до 40 - 60 м расположены близко к поверхности.  [4]

Наиболее крупным бассейном из числа эксплуатируемых является Канско-Ачинский буроугольный в Красноярском крае, где пласты угля толщиной до 40 - 60 м расположены близко к поверхности.  [5]

По запасам углей наиболее крупным бассейном не только в СССР, но и во всем мире является Кузнецкий, в недрах которого хранятся сотни миллиардов тонн самых разнообразных углей - от длиннопламенных до тощих включительно. Угли этого бассейна отличаются высоким качеством и весьма разнообразны по свойствам.  [6]

После Маракаибского бассейна наиболее крупными бассейнами являются Оринокский, Верхнеамазонский и Центральнопредандийский пограничные бассейны. Залежи в этих бассейнах приурочены к песчаным коллекторам, площадь развития которых является основным фактором, определяющим распространение залежей.  [7]

Самые крупные месторождения нефти и газа приурочены к наиболее крупным бассейнам, среди которых выделяются бассейны Персидского залива ( около половины мировых запасов нефти), Западной Сибири, Оринокский, Мексиканского залива, Северного моря, Прикаспийский, Южно-Китайского моря, бассейны Северной и Западной Африки, Явы, Суматры и Калимантана на Индонезийском архипелаге. Здесь не названы даже все самые крупные из известных, но многие бассейны еще и не разведаны. Прежде всего это относится к бассейнам в акваториях, особенно крупные из них предполагаются в пределах российского северного шельфа. Особую категорию месторождений УВ-сырья составляют скопления асфальтовых битумов, производных нефти в зоне гипергенеза. Они приурочены обычно к периферическим бортовым участкам осадочных бассейнов. Крупнейшими на планете являются скопления асфальтов в Канаде ( Западно-Канадский бассейн), в Венесуэле ( южный борт Оринокского бассейна) и на севере Восточной Сибири на стыке двух крупнейших бассейнов - Енисей-Хатангского и Лено-Вилюйского.  [8]

На рис. 5 приводится модифицированная карта-схема распространения диффузных структур ( см. рис. 3) с указанием областей, антиподальных наиболее крупным бассейнам видимой стороны. Из рис. 5 следует, что однозначной тенденции не прослеживается.  [10]

Углеснабжающая система России занимает одно из первых мест в мире по добыче угля. Наиболее крупные бассейны - Канско-Ачинский и Кузнецкий - расположены в азиатском регионе страны на значительном удалении от промышленных зон европейской части, что затрудняет рациональное использование этих источников энергоресурсов.  [12]

Нет закономерной связи и между объемной плотностью ресурсов и тектонотипом бассейна: для одних и тех же типов бассейнов характерны как очень высокие, так и очень низкие или средние величины объемной плотности. Не обнаруживается строгой зависимости между величиной объемной плотности и названными геологическими характеристиками бассейнов и в тех случаях, когда статистическая выборка ограничивалась только 38 наиболее крупными бассейнами или 32 бассейнами, в которых существенную роль играют соленосные отложения. Достаточно четкая статистическая связь объемной плотности ресурсов углеводородов отмечается только с относительной долей природных резервуаров в общем объеме осадочного чехла.  [13]

Страницы:      1

www.ngpedia.ru


Смотрите также