Нефтехимический синтез. Что такое синтез нефти


Нефть синтеза - Справочник химика 21

    Несмотря на относительно большую концентрацию углеводородов ряда бицикло(3,2,1)октана в нефтях, синтезы их стали осу-ш ествляться лишь в последние годы. Надо сказать, что получение углеводородов ряда бицикло(3,2,1)октана связано с рядом трудностей, так как непосредственной конденсацией по Дильсу— Альдеру их получить нельзя. Все же именно эта реакция лежит в основе синтеза данных углеводородов, так как большинство бицикло(3,2,1)октанов синтезировано путем расширения одного из циклов в углеводородах (или чаш е в функциональных производных) ряда бицикло(2,2,1)гептана, получаемых конденсацией по Дильсу — Альдеру. [c.278]     Книга содержит систематический обзор литературы по вопросам химического состава, строения, свойств нафтеновых кислот, содержащихся в нефти, синтеза на их основе различных кислород- и азотсодержащих органических веществ и практического применения этих продуктов. Рассмотрены этапы развития методов изучения нафтеновых кислот, значение современных химических, физико-химических, газохроматографических и масс-спектрометрических методов исследования для открытия в нефтях кислот новых структурных типов. Описано большое число кислород- и азотсодержащих продуктов, полученных химической переработкой нафтеновых кислот. Рассмотрено применение кислород- и азотсодержащих производных в качестве пластификаторов, синтетических смазочных масел, анионных и катионных ПАВ. [c.2]

    Смазочные жидкости, чаще всего эфиры или полиолефины, полученные синтезом из химических реагентов, а не очисткой нефти. Синтез с использованием определенных химических соединений позволяет получать продукты с запланированными свойствами. [c.14]

    Гетерогенная каталитическая реакция наблюдается всегда, когда скорость химической реакции возрастает благодаря присутствию поверхности раздела двух фаз. Поверхности твердых тел особенно важны как гетерогенные катализаторы для реакций между газами или между газом и жидкостью. Проблемы, возникшие при попытках использовать эти поверхности для получения химических продуктов с большей скоростью и с большей селективностью, оказались захватывающими с точки зрения химиков и физиков. Можно без преувеличения сказать, что большинство усовершенствований, внесенных при использовании этих катализаторов для получения продуктов в крупном масштабе, явилось результатом тщательно продуманных и широко поставленных опытов, а не следствием применения химической теории. Широта области, охватываемой гетерогенным катализом, показывает масштаб этих усилий как указано в табл. 9 (см. стр. 152), к этому типу катализа относятся синтез аммиака из элементов и его окисление в окись азота и азотную кислоту, окисление двуокиси серы в трехокись и углеводородов в полезные кислородсодержащие продукты, различные реакции перегруппировки, циклизации, разложения и полимеризации, которые имеют место при крекинге нефти, синтез углеводородов, спиртов и альдегидов [c.18]

    В нефтеперерабатывающей промышленности в гетерогенных системах проводят реакцию гидрогенизации тяжелых остатков от переработки нефти, синтез твердых парафинов из СО и Нг, хлорирование твердых н-парафиновых углеводородов, производят синтез технического углерода их газообразных углеводородов и другие. Равновесие в такой системе характеризуется определенными особенностями вследствие того, что в системе одновременно могут находиться газообразные, жидкие и твердые вещества. В химической схеме реакции обозначим газообразные вещества буквами Л и Лр а твердые —В/ и В .  [c.200]

    В результате действия ионизирующих излучений на некоторые, вещества и смеси веществ могут протекать реакции, ведущие к -образованию технически важных продуктов. В настоящее время исследованы такие процессы, как радиационно-химическая полимеризация, изменение свойств полимеров в результате сшивания, низкотемпературный крекинг нефти, синтез гидразина из аммиака, окислов азота из воздуха и ряд других процессов. Особый интерес представляют цепные реакции под действием ионизирующего излучения. К таким реакциям относятся окисление углеводородов, их галоидирование, сульфоокисление, сульфохлорирование, полимеризация и др. [c.597]

    Каталитические реакции чрезвычайно распространены в при роде и часто используются в промышленности Большинство биологических процессов, протекающих в организме животных и растений, являются каталитическими Их скорость регулируется особыми веществами — ферментами играющими роль катализа торов Промышленные реакции полимеризации крекинга нефти синтеза кислот и других продуктов являются преимущественно каталитическими [c.338]

    Для СССР, располагающего огромными запасами нефти, синтез моторного топлива на основе синтез-газа, не имеет практического значения. Но этот процесс представляет интерес с точки зрения получения парафинов нормального строения, являющихся сырьем для процессов окисления, и нормальных олефинов, идущих на производство спиртов и моющих средств. Олефины могут быть получены непосредственно в результате этого процесса, а также и при последующем (термическом) крекинге парафина. Наибольшее развитие на основе окиси углерода и водорода в СССР получило производство метанола. Внедряется з промышленность и оксосинтез как процесс для получения альдегидов и первичных спиртов. [c.229]

    Водородная коррозия может сопутствовать многим технологическим процессам, протекающим при повышенных температурах от 200 °С и давлениях от 300 МПа в средах, содержащих водород. Эти условия отвечают таким процессам, как гидрирование угля и нефти, синтез аммиака и метанола и др. [c.164]

    Ведутся работы по синтезу НПАВ на основе блок-сополимеров этилен- и пропиленоксида, которые могут использоваться для текстильно-вспомогательных веществ, обессоливания и обезвоживания нефтей, синтеза полиуретанов, смазочно-охлаждаю-щих жидкостей, в качестве ингибиторов парафинистых, смолистых и солевых отложений в нефтепромысловом оборудовании и др. В целях расширения ассортимента ПАВ в стране, а также в связи с высокой экономической эффективностью применения блок-сополимеров ПАВ необходимо и в дальнейшем развивать это направление, обратив особое внимание на разработку биологически мягких ПАВ и организацию их промышленного внедрения. Удовлетворение потребности народного хозяйства в эффективных блок-сополимерных ПАВ (деэмульгаторах нефти) должно идти по пути крупнотоннажного их производства, так как в этом случае снижаются приведенные- затраты на 1 т получаемых продуктов. [c.380]

    Синтезы углеводородов с целью получения моторного топлива развивались в довоенный период в Германии, не имеющей собственной нефти. Синтез осуществляется на основе синтез-газа, получаемого газификацией бурых углей. [c.229]

    А использовать этот газ можно для получения окиси углерода, который стал бы служить сырьем для получения смеси углеводородов — синтетической нефти . Синтез нефти — идея не новая. Еще в 1908 г. русский химик-технолог Е. И. Орлов установил, что из водяного газа (смесь окиси углерода и водорода) при определенных условиях можно синтезировать углеводороды, которые содержатся в нефти. Прошло совсем немного време- [c.125]

    В результате действия ионизирующего излучения на некоторые вещества и смеси веществ может протекать синтез технически важных веществ. В настоящее время исследованы такие процессы, как радиационно-химическая полимеризация, изменение свойств полимеров, их сшивание, низкотемпературный крекинг нефти, синтез гидразина из аммиака, окисей азота из воздуха й ряд других процессов. Многие из этих процессов, очевидно, широко войдут в практику многотоннажного производства. [c.135]

    В кипящем или псевдоожиженном (флюидизированном) слое частицы имеют подвижность относительно друг друга наподобие частиц жидкости. Такое состояние сорбента наступает при достижении некоторых критических скоростей потока, подаваемого снизу, при которых слой сорбента расширяется и приобретает свойство текучести. Флюидизация твердых тел применяется с целью интенсификации процессов разделения газовых смесей, каталитического крекинга нефти, синтеза жидких углеводородов, газификации угля, сушки зернистых материалов и др. [c.210]

    В. Г. Фастовский, учитывая, что водород коксового газа в настоящее время находит применение не только в процессе синтеза аммиака, но и в других областях (гидрирование углей, нефти, синтез метанола и др.), где нет необходимости, чтобы водород был тщательно очищен от окиси углерода, предлагает новую схему, представляющую модификацию схемы Клода. В схеме [c.186]

    Газ, содержащий окись углерода, водород и двуокись углерода, может быть получен почти из всех видов сырья, которые используются при производстве водорода (например, для процесса синтеза аммиака). В связи с этим промышленный синтез метанола базируется на тех же сырьевых источниках, что и вся азотная промышленность. Это кокс, уголь, коксовый газ, природный газ, мазут, нефть, синтез-газ производства ацетилена окислительным пиролизом. Первые промышленные методы получения газов, содержащих СО, основывались на применении кокса, или другого твердого топлива (антрацит, сланцы, бурые угли). В одном из наиболее старых, но крупных производств для получения исходного газа еще используются кокс и полукокс. В этом случае твердое топливо подвергается газификации при атмосферном или повышенном давлении. В качестве окислителя используют водяной пар (паровое дутье) или смесь пара и кислорода (паро-кислородное дутье). Процессы получения водяного газа на основе газификации твердого топлива подробно описаны в литературе и здесь не рассматриваются. Отметим лишь, что практически при любом режиме газификации отношение Нг СО в получаемом газе меньше 2, поэтому перед использованием состав газа регулируют путем конверсии окиси углерода водяным паром и очисткой конвертированного газа от двуокиси углерода. [c.69]

    Явление, благодаря которому возможна жизнь, это — катализ, действие определенных веществ, которые ускоряют в тысячи раз химические реакции, а сами при этом не изменяются. В химической промышленности катализаторы используются при крекинге нефти, синтезе аммиака и при многих других процессах. Организм с их помощью создает свои ткани и расщепляет пищевые продукты до более простых веществ так, как он это делает за четыре часа с белками. Катализаторы в живых существах называются биокатализаторами, или ферментами, и успехи биологии зависят от углубления наших знаний о том, что они собой представляют и как именно они действуют. [c.167]

    Твердые и мягкие парафины С Н2 +2 Нефть Синтез из окиси углерода и водорода [c.275]

    Усовершенствование технологии производства масла применением эффективных процессов очистки, осуществлением молекулярной конверсии молекул нефти, синтезом новых масел, позволяет существенно улучшить некоторые эксплуатационные параметры. Весьма значительно свойства масел могут быть улучшены добавлением в базовое масло присадок. Масло, улучшенное присадками, называется компаундированным или легированным маслом blended oil, ompounded oil, formulated oil). Варьированием состава компонентов базового масла и композиций присадок разработчики смазочных материалов могут создать масла, отвечающие разнообразным требованиям производителей механизмов и оборудования, а также формировать широкий ассортимент смазочных материалов с дифференцированными свойствами для решения многообразных, иногда весьма специфических и даже противоречивых, задач смазывания двигателей и агрегатов трансмиссии. [c.24]

    Наконец, наиболее важную и многообразную группу составляют химические процессы, связанные с изменением химического состава и свойств вещества, скорость протекания которых определяется законами химической кинетики. К сожалению, до сих пор еще не удалось создать строгую научную классификацию этих процессов. Это оказалось делом очень трудным. Часть химических процессов классифицируется по принципу получаемых продуктов или отраслям производства (минеральные кислоты, щелочи, соли, минеральные удобрения, металлы, силикаты, высокомолекулярные соединения, пластические массы, каучуки и резины, химические волокна, целлюлоза и бумага, органические красители, клеи, лаки и краски, сахара, спирты, жиры и т. п.), часть — по принципу общности процессов производства (электрохимические процессы, электротермические, микробиологический синтез, процессы брожения и т. п.), часть — по принципу общности исходного сырья (химическая технология нефти, синтезы на основе окиси углерода, олефиновых углеводородов, ацетилена, ароматических углеводородов и т. п.). [c.137]

    В настоящее время молекулярный водород используется в ряде областей химической промышленности. Особенно много его расходуется при переработке нефти, синтезе метанола, а также аммиака, соединения которого используются в качестве удобрений. Кроме того, молекулярный водород может обеспечивать как источник энергии рост ряда бактерий, некоторые из которых являются перспективными продуцентами биомассы, богатой бел- [c.630]

    Часто наблюдают явление водородного охрупчивания стали при процессах гидрирования угля и нефти, синтеза аммиака и других производствах современной химической промышленности. Зарегистрирована также и возможность появления водородной хрупкости при очень больших внешних давлениях газообразного водорода, даже при гораздо более низких температурах (ниже 100°). [c.109]

    В. В. Марковникова, К. Энглера были развернуты исследования углеводородного состава нефтей разл. месторождений, гл. обр. кавказских, разработка приборов и методов для анализа нефтей, синтез модельных углеводородов. В кон. 19-нач. 20 вв. были выполнены первые работы по хлорированию и гидрохлорированию углеводородов нефти (Марковников), их нитрованию (М. И. Коновалов, С. С. Наметкин) и жндкофазному окислению (К. В. Харичков, Энг-лер), а также по каталитич. превращениям высококипящих углеводородов (В.Н. Ипатьев, Н.Д. Зелинский). [c.228]

    Для решения своих задач Н. комплексно использует методы и достижения орг. и физ. химии, математики, теплотехники, кибернетики н др. наук. В связи с четко выраженной прикладной направленностью исследований при разработке нефтехим. процессов широко практикуется моделирование и проверка их на опытных установках разл. масштаба (см. Масштабный переход). Научные исследования в Н. развиваются по след. осн. направлениям изучение хнм. состава нефтей, взаимопревращения углеводородов нефти, синтез функцион. производных углеводородов из нефтвгаого и газового сырья. [c.229]

    Синтез дивинила из этилового спирта по методу С. В. Лебедева. Работы Ю. А. Горина по изучению механизма этого процесса. Синтез дивинила по методу Кучерова-Остромысленского. Синтез дивинила на базе естественного газа и газов крекинга нефти. Синтез изопрена, хлоропрена, изобутилена. Полимеризация с помощью металлического натрия. Строение и свойства иатрий-дивинилового каучука. Эмульсионная полимеризация. Технология и механизм процесса. Овойства и строение каучуков Буна-Ы, Буна-5 и хлоропренового. Полимеризация в растворах. Полиизобутиленовые каучуки. Поликонденсация. Полисульфидные каучуки и др. [c.234]

    На рис. 3 приведена диаграмма развития катализа. Конец 60-х гг. был временем активной разработки новых каталитических процессов. Перечень более поздних из них составлен фирмой Халкон интернэшнл [5] (табл. 2). Другие важные разработки включают семейство катализаторов ZSM, предложенных фирмой Мобил ойл корпорейшн , карбонилирование метанола в уксусную кислоту, осуществленное фирмой Монсанто , и новое поколение катализаторов переработки нефти, синтеза полиолефинов, оксихлорирования и т. д. [c.19]

    К. к.-о. приобрел за последние годы исключительно важное практич. значение в химич. процессах, осуществляемых в промышленном масштабе. К числу таких важнейших процессов относятся гидратация и изомеризация олефинов, этерификация спиртов, нитрование углеводородов, гидролиз крахмала и других полисахаридов, алкилирование ароматич. соединений, каталитич. крекинг нефти, синтез высокомолекулярных соединений методами ионной полимеризации и др. Процесс парофазной гидратации этилена в этиловый сиирт, являющийся основным источником синтетич. этилового снирта, осуществляется с использованием в качестве катализатора фосфорной к-ты, нанесенной на пористые силикатные носители. Аналогичные катализаторы применяются при парофазном алкилированип бензола олефинами. Катализаторами алкилирования ароматич. соединений в жидкой фазе служат хлористый алюминий или фтористый бор. Широкое применение в качестве катализаторов процесса полимеризации нек-рых непредельных углеводородов получили фтористый бор, хлорное олово и др. Напр., полимеризация иаобутилена при каталитич. действии BFg протекает с очень большой скоростью при весьма низких темп-рах (ок. —100°). Для каталитич. крекинга нефтп используют алюмосиликатные катализаторы, поверхность к-рых обладает кислотными свойствами- Большая практич. значимость К. к.-о. определила интенсивное развитие исследований в последние годы в области практич. использования кислот и оснований как катализаторов различных процессов и в направлении выявления закономерностей и механизма каталитич. действия этого класса соединепий. [c.241]

    Без преувеличения можно сказать, что русские исследователи являются основоположниками таких отраслей одной только органической химической промышленности, как тяжелый органический синтез соединений алифатического ряда, синтетический каучук, пиролиз и ароматизация нефти, синтез поверхностно-активных веществ и т. д. Очень многие открытия русских химиков дореволюционного времени были использованы иностранной промьппленпостью, по преимуществу германской, а позднее американской, и только теперь, за 25 лет советской эры, мы начинаем и в пашем отечестве пожинать плоды работы наших химических предков. [c.210]

    При работе по первому направлению в качестве сырья используют мягкие парафины, выделенные при карбамидпой депара-финизации дизельного топлива долинской нефти. Синтез моющих веществ в этом случае осуществляется по этапам хлорирование, [c.192]

    Открытие явлений изомеризации циклов под Елияиием разных реагентов уже тогда вызвало необходимость изменения методов исследованпя нефтей. Синтез индивидуальных углеводородов, которые могут входить в состав нефти, и сравнение с ними углеводородов нефтяного происхождения, как это показала практика, дава.т наиболее надежные результаты. [c.16]

chem21.info

синтетическая нефть - это... Что такое синтетическая нефть?

 синтетическая нефть

1) General subject: synoil

Универсальный русско-английский словарь. Академик.ру. 2011.

  • синтетическая неплетеная нить
  • синтетическая нить

Смотреть что такое "синтетическая нефть" в других словарях:

  • синтетическая сырая нефть — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN syncrude …   Справочник технического переводчика

  • Битум — Битум, полученный из нефти Битумы (от лат. bitumen  горная смола, нефть)  твёрдые или смолоподобные продукты, представляющие собой смесь углеводородов и их азотистых, кислородистых, сернистых и металлосодержащих производных. Битумы …   Википедия

  • Битум — (Asphalt) Определение битума, свойства битума, применение битума Информация об определении битума, свойства битума, применение битума Содержание Содержание 1. Свойства 2. Методы испытания и соответствующие виды классификаций Пенетрация… …   Энциклопедия инвестора

  • Пиролиз — (от др. греч. πῦρ  огонь, жар и λύσις  разложение, распад)  термическое разложение органических и многих неорганических соединений. В узком смысле, разложение органических природных соединений при недостатке воздуха (древесины,… …   Википедия

  • Пиролиз древесины — Пиролиз (от греч. pyr огонь, жар и lysis разложение, распад) термическое разложение органических соединений (древесины, нефтепродуктов, угля и прочего). Содержание 1 Пиролиз углеводородов 1.1 Введе …   Википедия

  • Синтез-газ — смесь оксида углерода и водорода, промежуточный продукт при переработке природного газа в полезную химическую продукцию. Из синтез газа получают следующие продукты: оксигенанты метанол, диметиловый эфир (ДМЭ) и др.; широко кипящая фракция… …   Нефтегазовая микроэнциклопедия

  • Список способностей персонажей телесериала «Герои» — Спираль, также известная как Символ Большинство персонажей сериала «Герои» обладает сверхчеловеческими способностями. Способности связаны с генотипом и передаются по наследству. Статья является переводом интерпретацией статьи на английском.… …   Википедия

  • Китайская Национальная Нефтегазовая корпорация — (CNPC) Китайская Национальная Нефтегазовая корпорация это одна из крупнейших нефтегазовых компаний мира Китайская Национальная Нефтегазовая корпорация занимается добычей нефти и газа, нефтехимическим производством, продажей нефтепродуктов,… …   Энциклопедия инвестора

  • Соединённые Штаты Америки — (США)         (United States of America, USA).          I. Общие сведения          США государство в Северной Америке. Площадь 9,4 млн. км2. Население 216 млн. чел. (1976, оценка). Столица г. Вашингтон. В административном отношении территория США …   Большая советская энциклопедия

  • Биржевой рынок — (Stock market) Биржевой рынок это рынок определенных финансовых инструментов имеющий регламентированные правила для осуществления биржевых сделок Биржевой рынок, виды биржевых рынков описание и общие понятия Содержание >>>>>>>>>> …   Энциклопедия инвестора

  • Международный валютный фонд — (International Monetary Fund) МВФ это финансовое учреждение ООН, деятельность которого направленна на содействие и регулирование валютного обмена между странами, а так же выдачу займов государствам членам История развития МВФ, его организационная …   Энциклопедия инвестора

universal_ru_en.academic.ru

Нефтехимический синтез - это... Что такое Нефтехимический синтез?

        получение химических продуктов на основе нефти и углеводородных газов синтетическим путём. Углеводороды нефти (См. Нефть) и газов природных горючих (См. Газы природные горючие), газов нефтяных попутных (См. Газы нефтяные попутные), газов нефтепереработки (См. Газы нефтепереработки) служат основным сырьём в производстве важнейших массовых синтетических продуктов: пластмасс, каучуков и волокон, азотных удобрений, поверхностно-активных и моющих веществ, пластификаторов; топлив, смазочных масел и присадок к ним, растворителей, экстрагентов и др. (см. Нефтепродукты). Все эти продукты широко применяются в различных отраслях народного хозяйства и в быту, с ними связано развитие многих новых областей техники (космонавтики, атомной энергетики и др.). В промышленно развитых странах Н. с. позволил создать крупную и быстро развивающуюся нефтехимическую промышленность (См. Нефтехимическая промышленность). Углеводороды нефти и газов, являясь доступным, более технологичным и дешёвым сырьём, вытесняют остальные виды сырья (угли, сланцы, растительное, животное сырьё и пр.) почти во всех процессах органического синтеза (см. Основной органический синтез).

         Н. с. базируется на успехах органической химии, катализа, физической химии, химической технологии и др. наук и связан с глубоким изучением состава нефтей и свойств их компонентов. В основе процессов переработки углеводородного сырья в целевые продукты лежат многочисленные реакции органической химии: пиролиз, окисление, алкилирование, дегидрирование и гидрирование, галогенирование, полимеризация, нитрование, сульфирование и др.; важнейшее значение среди них имеют каталитические реакции. В производстве продуктов Н. с. большое место занимает подготовка углеводородного сырья и получение первичных исходных углеводородов: предельных (парафиновых), непредельных (олефиновых, диеновых, ацетилена), ароматических и нафтеновых. Основная их часть превращается в функциональные производные с активными группами, содержащими кислород, азот, хлор, фтор, серу и др. элементы.

         Предельные (алкановые) углеводороды занимают важное место по объёму использования в Н. с. Для производства различных химических продуктов потребляют низшие газообразные углеводороды (метан, этан, пропан, бутан, пентаны) и жидкие или твёрдые парафины (от C6 до C40). Низшие парафиновые углеводороды выделяются из газов природных и попутных. Газы нефтяные попутные и получаемые при стабилизации нефти содержат предельные углеводороды C2—C5 в количестве 83—97 объёмных %. Из них выделяют этан-пропановую фракцию, изобутан, н-бутан, пентан. Природный газ с содержанием 96—97% метана используется в качестве технического метана в основном для производства Аммиака, Ацетилена, метилового спирта (См. Метиловый спирт), хлорпроизводных соединений, Сероуглерода, синильной кислоты (См. Синильная кислота). Жидкие и твёрдые нормальные парафины C6—C40 получают из продуктов переработки нефти (бензино-керосиновых, дизельных и масляных дистиллятов) кристаллизацией при охлаждении, карбамидной депарафинизацией (см. Депарафинизация нефтепродуктов) и с помощью молекулярных сит (См. Молекулярные сита), а также др. методами. Переработкой парафинового сырья обеспечивается всё возрастающая потребность Н. с. в непредельных углеводородах (олефинах, диенах, ацетилене). Основным методом производства олефинов (См. Олефины) (этилена, пропилена, бутиленов) является высокотемпературный Пиролиз разнообразного сырья, начиная от этана и газового бензина до тяжёлых нефтяных фракций и сырой нефти. Олефины получаются также попутно в процессах нефтепереработки. Каталитическим дегидрированием (см. Гидрогенизация) превращают бутан в бутадиен, а изопентан в изопрен — в основные мономеры для производства каучуков синтетических (См. Каучуки синтетические).          Большое промышленное значение имеют процессы конверсии парафиновых углеводородов в синтез-газ (смесь окиси углерода с водородом, см. Конверсия газов). Сырьём могут быть газы природные, попутные, нефтепереработки и любые нефтяные фракции. Из синтез-газа получают дешёвый Водород, потребляемый в больших количествах для синтеза аммиака, гидроочистки нефтепродуктов, гидрокрекинга и др. процессов. Аммиак служит исходным продуктом для производства удобрений (аммиачной селитры, мочевины), синильной кислоты и др. Двухступенчатой конверсией метана производят также концентрированную Углерода окись, используемую для многих процессов Н. с. Синтез-газ широко применяется в оксосинтезе, основанном на реакциях олефинов с окисью углерода и водородом. Из окиси углерода и водорода вырабатывается метанол — сырьё, из которого получают Формальдегид, важнейший продукт для производства пластмасс, лаков, клеев и пр. материалов.          Применяя реакции окисления, галогенирования, нитрования, сульфирования и др., из парафинов производят разнообразные продукты. Путём прямого жидкофазного окисления воздухом лёгких фракций (пределы выкипания 30—90 °С) бензина прямой перегонки при 150—210 °С и 4 Мн/м2 (40 ам) в присутствии ацетата кобальта или марганца вырабатывают в больших количествах уксусную кислоту (См. Уксусная кислота). Многотоннажным процессом является жидкофазное окисление воздухом твёрдых нормальных парафинов в высшие жирные кислоты (C10—C20). В промышленности реализовано производство высших спиртов окислением н-парафинов (C10—C20). Из них вырабатывают Поверхностно-активные вещества, моющие вещества типа алкилсульфатов и пр.          В промышленных масштабах вырабатывают галогенопроизводные парафинов. Из метана получают Метилхлорид, Метиленхлорид, Хлороформ, Четырёххлористый углерод и др. продукты. Метиленхлорид и четырёххлористый углерод являются хорошими растворителями. Хлороформ используют для синтеза тетрахлорэтилена, хлорфторпроизводных, ценного мономера Тетрафторэтилена и прочих. Хлорированием этана производят Гексахлорэтан и др. хлорпроизводные. Продукт хлорирования твёрдых парафинов хлорпарафин-40 (около 40% Cl) используется в качестве пластификатора, хлорпарафин-70 (около 70% Cl) — для пропитки бумаги и тканей повышенной огнестойкости. Продукты полного фторирования узких фракций керосина и газойля являются ценными смазочными веществами и гидравлическими жидкостями (См. Гидравлические жидкости), обладающими высокой термической и химической стойкостью. Они могут работать продолжительное время при 250—300 °С в очень агрессивных средах. Фреоны — хлорфторпроизводные метана и этана — применяются в качестве хладоагентов в холодильных машинах. Нитрованием пропана и парафинов, кипящих выше 160—180 °С, азотной кислотой вырабатывают смесь нитропарафинов. Они используются как растворители и промежуточные продукты синтеза нитроспиртов, аминоспиртов (См. Аминоспирты), взрывчатых веществ (См. Взрывчатые вещества). Сульфохлорированием и сульфоокислением керосиновых фракций C12—C20 и н-парафинов получают поверхностно-активные вещества типа алкилсульфонатов.

         Непредельные углеводороды. Благодаря высокой реакционной способности эти соединения широко используются в Н. с. Многие продукты синтезируются на основе олефинов, диеновых углеводородов и ацетилена.

         Олефины. Первое место по масштабам промышленного потребления среди олефинов занимает Этилен; во всё возрастающих количествах применяют Пропилен и бутены. Из высших олефинов основное значение имеют α-олефины с прямой цепью, получаемые термическим крекингом твёрдого или мягкого парафина при температуре около 550 °С и каталитической олигомеризацией этилена с помощью алюминийорганических катализаторов. Полимеризацией олефинов получают высокомолекулярные продукты — Полиэтилен, Полипропилен и др. полиолефины. Полиэтилен — самый массовый вид пластмасс. Его производство растет очень быстро, и он широко используется во всех отраслях промышленности. Быстро прогрессирует синтез Винилхлорида окислительным хлорированием этилена или смеси этилена с ацетиленом. Винилхлорид широко используется для производства многих полимерных материалов. Из поливинилхлорида изготавливают плёнки, трубы и прочие.

         Большое значение в Н. с. приобрели окись этилена и окись пропилена; из них синтезируют гликоли, поверхностно-активные вещества, этаноламины и др. Значительное количество этилена расходуется на алкилирование бензола для производства стирола, окисление в ацетальдегид и уксусную кислоту, для производства винилацетата и этилового спирта. Для получения спиртов, альдегидов и некоторых др. соединений используется оксосинтез. Хлорированием олефинов производят многие ценные растворители, инсектициды и др. вещества. Из высших олефинов синтезируют алкилсульфаты, присадки к нефтепродуктам.

         Диены. Бутадиен-1,3 и 2-метил-бутадиен-1,3 (см. Изопрен) являются основными мономерами в производстве синтетических каучуков. В промышленности бутадиен получается как побочный продукт пиролиза и дегидрированием бутана и бутиленовой фракции продуктов пиролиза нефтяного сырья на этилен. К перспективным методам производства изопрена относится дегидрирование изоамиленов, выделенных из лёгких крекинг-бензинов, и дегидрирование изопентана, содержащегося в попутных газах и получаемого изомеризацией н-пентана. Часть бутадиена расходуется на получение хлоропрена, циклододекатриена-1,5,9 — полупродукта в производстве полиамидных волокон.          Ацетилен. Большое количество ацетилена производится из метана и др. парафиновых углеводородов окислительным пиролизом, электрокрекингом и пиролизом различного нефтяного сырья в водородной плазме. Димеризацией ацетилена в присутствии однохлористой меди получают винилацетилен, используемый главным образом для производства Хлоропрена (см. также Хлоропреновые каучуки). Из ацетилена получают также акрилонитрил, винилхлорид, ацетальдегид, но во всех этих случаях ацетилен постепенно вытесняется более дешёвыми этиленом и пропиленом.          Ароматические углеводороды. Бензол, толуол, ксилолы, три - и тетраметилбензолы, нафталин являются ценным сырьём для синтеза многих продуктов. Ароматические углеводороды образуются в процессах каталитического Риформинга бензиновых и лигроиновых фракций. В значительных количествах эти соединения получаются попутно при пиролитическом производстве этилена. Бензол и нафталин получают также деалкилированием их алкилпроизводных в присутствии водорода. Для производства этим способом бензола используют алкилароматические углеводороды (толуол, ксилолы, высшие алкилпроизводные) и бензины пиролиза. Сырьём для получения нафталина являются тяжёлые фракции риформинга, газойля каталитического крекинга. Алкилированием бензола этиленом получают этилбензол, алкилированием пропиленом — изопропилбензол, превращаемые дигидрированием в ценнейшие мономеры для производства каучуков — Стирол и α-метилстирол. Из изопропилбензола при окислении воздухом получают в больших количествах фенол и ацетон. На основе алкилароматических соединений синтезируют пластификаторы, смазочные масла и присадки к ним, поверхностно-активные вещества. Окислением ароматических углеводородов получают терефталевую кислоту, служащую для производства волокон (лавсана), малеиновый и Фталевый ангидрид, ценные пластификаторы и компоненты термостойких пластмасс (полиимиды). В меньших масштабах используется хлорирование, нитрование и др. реакции. Из хлорфенолов и хлорнафталинов производят эффективные Гербициды, растворители и изоляционные масла для трансформаторов. Бензилхлорид используется для синтеза ряда соединений, содержащих бензильную группу (Бензиловый спирт, его эфиры и прочие).          Нафтены. Из этих углеводородов только Циклогексан приобрёл большое значение в Н. с. В небольших количествах циклогексан выделяется чёткой ректификацией бензиновых фракций нефти (содержащих 1—7% циклогексана и 1—5% метилциклопентана). Метилциклопентан превращают в циклогексан изомеризацией с хлористым алюминием. Промышленная потребность в циклогексане удовлетворяется в основном получением его гидрированием бензола в присутствии катализатора. Окислением циклогексана кислородом воздуха производят Циклогексанон и адипиновую кислоту, которые используются в производстве полиамидных синтетических волокон (капрона и нейлона). Адипиновая кислота и др. дикарбоновые кислоты, получаемые при окислении циклогексана, используются для синтеза эфиров, применяемых в качестве смазочных масел и пластификаторов. Циклогексанон находит применение как растворитель, а также как заменитель камфоры.          Большое внимание уделяется развитию микробиологического синтеза (См. Микробиологический синтез) на базе нефтяного сырья. Из парафиновых углеводородов получают белково-витаминные концентраты для питания животных.

         Лит.: Наметкин С. С., Собр. трудов, 3 изд., т. 3, М., 1955; Новые нефтехимические процессы и перспективы развития нефтехимии, М., 1970; Новейшие достижения нефтехимии и нефтепереработки, пер. с англ., т. 9—10, М., 1970; Лебедев Н. Н., Химия и технология основного органического и нефтехимического синтеза, М., 1971; Черный И. Р., Производство мономеров и сырья для нефтехимического синтеза, М., 1973; Жермен Дж., Каталитические превращения углеводородов, пер. с англ., М., 1972; Суханов В. П., Каталитические процессы в нефтепереработке, 2 изд., М., 1973; Ситтиг М., Процессы окисления углеводородного сырья, пер. с англ., М., 1970; Вынту В., Технология нефтехимических производств. пер. с рум., М., 1968; Платэ А. Ф., Нефтехимия, М., 1967; Основы технологии и нефтехимического синтеза, под ред. А. И. Динцеса и Л. А. Потоловского, М., 1960.

         Н. С. Наметкин, В. В. Панов.

dic.academic.ru

Технология GTL | Журнал Популярная Механика

На логотипе концерна Shell изображена раковина. А где раковина, там и жемчужина — завод Pearl GTL, использующий фирменную технологию синтеза жидких углеводородов из природного газа.

Дмитрий Мамонтов

23 июля 2014 14:10

История технологии GTL (gas-to-liquid, «из газа в жидкость») началась задолго до того, как нефть приобрела для человечества такое важное значение, какое она имеет в сегодняшнем мире. В 1902 году французский химик Поль Сабатье вместе со своим учеником Жаном Батистом Сандераном осуществил одну простую реакцию — они получили метан из смеси угарного газа (моноксида углерода) и водорода в присутствии порошкообразного никеля. А через несколько лет русский химик Егор Орлов получил из такой же смеси в присутствии никеля и палладия этилен, показав тем самым возможность синтеза высших углеводородов. Но довели эту технологию до коммерческого воплощения немецкие химики Франц Фишер и Ганс Тропш из Института кайзера Вильгельма по исследованию угля: в 1926 году была опубликована их знаменитая работа «О прямом синтезе нефтяных углеводородов при обыкновенном давлении». Описанный ими процесс позднее назвали процессом Фишера-Тропша.

Место расположения: Катар. Стоимость строительства: 19 млрд долларов. На входе: 45 млн кубометров природного газа в день из крупнейшего в мире оффшорного месторождения природного газа «Северное поле» (North Field). На выходе: 120 тыс. баррелей газового конденсата + 140 тыс. баррелей (22 тыс. кубометров) жидких углеводородов (продуктов синтеза) в день. Производство кислорода: 28 тыс. тонн в день. Производство пара: 8 тыс. тонн в час. Основная продукция: нафта, нормальные парафины, изопарафины (моторные масла, трансформаторные масла), керосин (авиационное топливо), газойль (дизельное топливо).

Технология, разработанная немецкими химиками, была совершенно прикладной. Она оказалась весьма полезна в бедной нефтью, но богатой углем Германии: в начале 1940-х годов процесс Фишера-Тропша активно использовался уже на двух десятках заводов. К 1943 году они выдавали 124 000 баррелей синтетического топлива ежедневно, обеспечивая 92% объема авиационного топлива (и 57% общего объема топлива всех видов), что делало подобные предприятия одной из основных целей бомбардировок войск союзников.

После войны союзники, к которым попали документы и специалисты по технологии синтеза, стали экспериментировать с получением синтетических углеводородов, однако до коммерческого применения не дошло — обнаружение огромных запасов нефти на Ближнем Востоке в начале 1950-х сделало эту технологию нерентабельной.

Схема конверсии природного газа в жидкие углеводороды с помощью каталитического синтеза и гидрокрекинга.

Кризис в помощь

«О процессе Фишера-Тропша вспомнили в 1973 году, когда нефтяной кризис резко повысил цены на нефть, — говорит Эндрю Хефер, вице-президент по маркетингу смазочных материалов концерна Shell. — Тогда в мире резко возрос интерес к альтернативным технологиям получения различных углеводородов, и химики многих компаний занялись этим вопросом. Концерн Shell совершенствовал синтез Фишера-Тропша на протяжении десяти лет, пока не появилась ясность, что эта технология может стать коммерчески выгодной. В 1983 году в Амстердаме было построено опытное производство, где химики получили возможность масштабных экспериментов, а в 1993-м открылся первый коммерческий завод концерна в Бинтулу (Малайзия), выпускающий 12 500 баррелей жидких синтетических углеводородов в день. А в 2006 году концерн Shell приступил к строительству самого большого в мире завода по производству синтетических углеводородов из природного газа, Pearl GTL в Катаре, который вступил в строй три года назад».

Завод производит нафту, нормальные парафины, базовые смазочные масла, керосин (авиационное топливо) и газойль (дизельное). Конечно, все эти соединения можно получить и из нефти, но синтез из газа имеет ряд серьезных преимуществ. Во‑первых, чистота синтетических углеводородов может быть намного выше минеральных, которые довольно сложно очищать от вредных примесей. «Получаемые в результате синтеза на установках Pearl GTL углеводороды столь чисты, что, например, парафины разрешено использовать в пищевой, косметической и фармацевтической промышленности», — поясняет Хефер.

Технология Shell Pureplus. При изготовлении базового масла из нефти состав конечного продукта во многом определяется начальным составом сырья. Кроме того, в конечном продукте остаются различные нестабильные вещества, такие как ароматические соединения (имеющие в своей структуре бензольное кольцо). В случае синтеза из метана состав конечных продуктов определяется исключительно технологией синтеза, а чистота продуктов может быть намного более высокой. В синтетических базовых маслах, полученных с помощью технологии Shell PurePlus, содержание изопарафинов достигает 85%, в то время как в минеральных маслах групп II и III (по классификации API, American Petroleum Institute — Американского института нефти) составляет всего 15−25%.

Во-вторых, разведанные мировые запасы газа превышают запасы нефти (по массе) более чем в десять раз, так что даже если человечество исчерпает запасы «черного золота», всегда есть вариант перехода на синтетические заменители топлива, масел и сырья для производства различных пластиков. В частности, на Pearl GTL синтезируют авиационное топливо, которое используется (наряду с минеральным) для заправки авиалайнеров Qatar Airways.

Из газа в князи

«Технология Shell Middle Distillate Synthesis (SMDS) основана на процессе Фишера-Тропша, которому почти сто лет, — объясняет Иэн Шеннон, руководитель отдела исследований и разработок моторных масел концерна Shell. — Тем не менее химики концерна потратили несколько десятилетий на усовершенствование этой технологии, получив при этом более 3500 патентов. Одна из ключевых деталей — катализаторы, состоящие из очень мелких частиц различных металлов, таких как кобальт, никель, железо и др., хотя точный состав их держится в строжайшем секрете. Чем эффективнее катализатор, тем больше выход конечного продукта синтеза. У нас есть огромный опыт производства синтетических углеводородов в Бинтулу, и наши инженеры постоянно экспериментируют с новыми катализаторами на опытном заводе в Амстердаме». Сами катализаторы для промышленного производства изготавливает компания Criterion, входящая в состав концерна Shell.

www.popmech.ru

Нефтехимический синтез - это... Что такое Нефтехимический синтез?

 Нефтехимический синтез Категории:
  • Нефть
  • Нефтехимия

Wikimedia Foundation. 2010.

  • Нефелометрия
  • Нива ГЭС-3

Смотреть что такое "Нефтехимический синтез" в других словарях:

  • нефтехимический синтез — naftos chemijos pramonė statusas T sritis chemija apibrėžtis Pramoninė organinių medžiagų gamyba iš naftos, gamtinių ir naftos dujų. atitikmenys: angl. petrochemical industry rus. нефтехимическая промышленность; нефтехимический синтез …   Chemijos terminų aiškinamasis žodynas

  • нефтехимический синтез — naftos cheminė sintezė statusas T sritis chemija apibrėžtis Pramoninė cheminių produktų didelių kiekių gamyba iš naftos, gamtinių ir naftos perdirbimo dujų. atitikmenys: angl. petrochemical synthesis rus. нефтехимический синтез …   Chemijos terminų aiškinamasis žodynas

  • Нефтехимический синтез —         получение химических продуктов на основе нефти и углеводородных газов синтетическим путём. Углеводороды нефти (См. Нефть) и газов природных горючих (См. Газы природные горючие), газов нефтяных попутных (См. Газы нефтяные попутные), газов… …   Большая советская энциклопедия

  • Синтез-Каучук — Тип ОАО Год основания 12 апреля 1960 Прежние названия Стерлитамакский Завод СК им. 40 летия Башкирской АССР (с 1960 29.06.1992 г.[1]), ЗАО Каучук …   Википедия

  • Основной органический синтез —         тяжёлый органический синтез, многотоннажное производство органических веществ (производительность установок десятки и сотни тыс. т в год). Продукты О. о. с. используются в качестве полупродуктов в различных отраслях химической… …   Большая советская энциклопедия

  • Нефтеперерабатывающий завод — Shell в городе Мартинез (Калифорния). Запрос «НПЗ» перенаправляется сюда; см. также другие значения. Нефтеперерабатывающий завод  промышленное предприятие, о …   Википедия

  • Нефтеперегонный завод — Нефтеперерабатывающий завод Shell в городе Мартинез (Калифорния). Основной функцией нефтеперерабатывающего завода (НПЗ) является переработка нефти в бензин, авиационный керосин, мазут, дизельное топливо, смазочные масла, смазки, битумы, нефтяной… …   Википедия

  • Royal Dutch Shell — Эта статья  о компании Royal Dutch Shell. О командных оболочках (shell) см. статью Оболочка операционной системы; о биржевом термине см. статью Шелл компания. Royal Dutch Shell plc Koninklijke Nederlandse Shell N.V …   Википедия

  • BP — Эта статья о корпорации; об отсчёте дат «до настоящего времени» см.: BP (летоисчисление). BP plc …   Википедия

  • Ройял Датч-Шелл груп — Royal Dutch Shell plc Koninklijke Nederlandse Shell N.V. Год основания 1907 Ключевые фигуры Йорма Оллила (председатель совета директоров) Йерун ван дер Веер (главный управляющий) Тип …   Википедия

dic.academic.ru

Нефтехимический синтез - это... Что такое Нефтехимический синтез?

 Нефтехимический синтез Категории:
  • Нефть
  • Нефтехимия

Wikimedia Foundation. 2010.

  • Нефелометрия
  • Нива ГЭС-3

Смотреть что такое "Нефтехимический синтез" в других словарях:

  • нефтехимический синтез — naftos chemijos pramonė statusas T sritis chemija apibrėžtis Pramoninė organinių medžiagų gamyba iš naftos, gamtinių ir naftos dujų. atitikmenys: angl. petrochemical industry rus. нефтехимическая промышленность; нефтехимический синтез …   Chemijos terminų aiškinamasis žodynas

  • нефтехимический синтез — naftos cheminė sintezė statusas T sritis chemija apibrėžtis Pramoninė cheminių produktų didelių kiekių gamyba iš naftos, gamtinių ir naftos perdirbimo dujų. atitikmenys: angl. petrochemical synthesis rus. нефтехимический синтез …   Chemijos terminų aiškinamasis žodynas

  • Нефтехимический синтез —         получение химических продуктов на основе нефти и углеводородных газов синтетическим путём. Углеводороды нефти (См. Нефть) и газов природных горючих (См. Газы природные горючие), газов нефтяных попутных (См. Газы нефтяные попутные), газов… …   Большая советская энциклопедия

  • Синтез-Каучук — Тип ОАО Год основания 12 апреля 1960 Прежние названия Стерлитамакский Завод СК им. 40 летия Башкирской АССР (с 1960 29.06.1992 г.[1]), ЗАО Каучук …   Википедия

  • Основной органический синтез —         тяжёлый органический синтез, многотоннажное производство органических веществ (производительность установок десятки и сотни тыс. т в год). Продукты О. о. с. используются в качестве полупродуктов в различных отраслях химической… …   Большая советская энциклопедия

  • Нефтеперерабатывающий завод — Shell в городе Мартинез (Калифорния). Запрос «НПЗ» перенаправляется сюда; см. также другие значения. Нефтеперерабатывающий завод  промышленное предприятие, о …   Википедия

  • Нефтеперегонный завод — Нефтеперерабатывающий завод Shell в городе Мартинез (Калифорния). Основной функцией нефтеперерабатывающего завода (НПЗ) является переработка нефти в бензин, авиационный керосин, мазут, дизельное топливо, смазочные масла, смазки, битумы, нефтяной… …   Википедия

  • Royal Dutch Shell — Эта статья  о компании Royal Dutch Shell. О командных оболочках (shell) см. статью Оболочка операционной системы; о биржевом термине см. статью Шелл компания. Royal Dutch Shell plc Koninklijke Nederlandse Shell N.V …   Википедия

  • BP — Эта статья о корпорации; об отсчёте дат «до настоящего времени» см.: BP (летоисчисление). BP plc …   Википедия

  • Ройял Датч-Шелл груп — Royal Dutch Shell plc Koninklijke Nederlandse Shell N.V. Год основания 1907 Ключевые фигуры Йорма Оллила (председатель совета директоров) Йерун ван дер Веер (главный управляющий) Тип …   Википедия

biograf.academic.ru

газ - это... Что такое Синтез-газ?

  • Синтез-газ — Синтез газ  смесь монооксида углерода и водорода. В промышленности получают паровой конверсией метана, парциальным окислением метана, газификацией угля. В зависимости от способа получения соотношение CO:Н2 варьируется от 1:1 до 1:3. В… …   Википедия

  • СИНТЕЗ-ГАЗ — СИНТЕЗ ГАЗ, смесь газов, главными компонентами которой являются CO и h3. Получают при переработке природного газа, нефтепродуктов, древесины, а также газификацией углей. Сырье в производстве водорода, углеводородов, метилового спирта и др. В… …   Современная энциклопедия

  • синтез-газ — синтез газ, синтез газа …   Орфографический словарь-справочник

  • Синтез-газ — СИНТЕЗ ГАЗ, смесь газов, главными компонентами которой являются CO и h3. Получают при переработке природного газа, нефтепродуктов, древесины, а также газификацией углей. Сырье в производстве водорода, углеводородов, метилового спирта и др. В… …   Иллюстрированный энциклопедический словарь

  • синтез-газ — Искусственный горючий газ, состоящий из СО и Н2 с примесями углеводородных и неуглеводородных компонентов, получаемый из углеродсодержащего сырья. [ГОСТ Р 53521 2009] Тематики переработка природного газа Обобщающие термины продукты переработки… …   Справочник технического переводчика

  • СИНТЕЗ-ГАЗ — состоит из СО (40 60%) и Н2 (30 50%). Получают конверсией природного горючего газа с водным паром и О2, а также газификацией топлив. Сырье в производстве углеводородов, метилового спирта и др …   Большой Энциклопедический словарь

  • синтез-газ — сущ., кол во синонимов: 1 • сигаз (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • синтез-газ — состоит из СО (40 60%) и h3 (30 50%). Получают конверсией природного горючего газа с водным паром и О2, а также газификацией топлив. Сырьё в производстве водорода, углеводородов, метилового спирта и др. * * * СИНТЕЗ ГАЗ СИНТЕЗ ГАЗ, состоит из СО… …   Энциклопедический словарь

  • синтез-газ — 43 синтез газ: Искусственный горючий газ, состоящий из СО и Н2 с примесями углеводородных и неуглеводородных компонентов, получаемый из углеродсодержащего сырья. Источник: ГОСТ Р 53521 2009: Переработка природного газа. Термины и определения… …   Словарь-справочник терминов нормативно-технической документации

  • синтез-газ — sintezės dujos statusas T sritis chemija apibrėžtis CO ir H₂ mišinys, naudojamas organinių junginių sintezei. atitikmenys: angl. synthesis gas rus. синтез газ …   Chemijos terminų aiškinamasis žodynas

  • СИНТЕЗ-ГАЗ — (сигаз), смесь газов, главными компонентами к рой являются СО и Н 2; используется для синтеза разных хим. соединений. Термин С. г. исторически связан с Фишера Тропша синтезом(1923), когда исходный для него газ получали газификацией кокса (см.… …   Химическая энциклопедия

  • neft.academic.ru