Тема 5. Добыча нефти глубинными штанговыми насосами. Добыча нефти штанговыми насосами


Насосный способ добычи нефти. Добыча нефти установками скважинных штанговых насосов (УСШН). Элементы оборудования УСШН

ШСНУ включает:

1. Наземное оборудование: станок-качалка (СК), оборудование устья.

2. Подземное оборудование: насосно-компрессорные трубы (НКТ), насосные штанги (НШ), штанговый скважинный насос (ШСН) и различные защитные устройства, улучшающие работу установки в осложненных условиях.

Отличительная особенность ШСНУ состоит в том, что в скважине устанавливают плунжерный (поршневой) насос, который приводится в действие поверхностным приводом посредством колонны штанг.

Глубинная штанговая насосная установка (рис. 11.1) состоит из скважинного насоса 2 вставного или не вставного типов, насосных штанг 4 насосно-компрессорных труб 3, подвешенных на планшайбе или в трубной подвеске 8, сальникового уплотнения 6, сальникового штока 7, станка-качалки 9, фундамента 10 и тройника 5. На приеме скважинного насоса устанавливается защитное приспособление в виде газового или песочного фильтра 1.

Станок-качалка сообщает штангам возвратно-поступательное движение, близкое к синусоидальному. СК имеет гибкую канатную подвеску для сочленения с верхним концом полированного штока и откидную или поворотную головку балансира для беспрепятственного прохода спуско-подъемных механизмов (талевого блока, крюка, элеватора) при подземном ремонте.

Балансир качается на поперечной оси, укрепленной в подшипниках, и сочленяется с двумя массивными кривошипами с помощью двух шатунов, расположенных по обе стороны редуктора. Кривошипы с подвижными противовесами могут перемещаться относительно оси вращения главного вала редуктора на то или иное расстояние вдоль кривошипов. Противовесы необходимы для уравновешивания станка-качалки.

Редуктор с постоянным передаточным числом, заполненный маслом, герметичный имеет трансмиссионный вал, на одном конце которого предусмотрен трансмиссионный шкив, соединенный клиноременной передачей с малым шкивом электродвигателя. На другом конце трансмиссионного вала имеется тормозной барабан. Опорный подшипник балансира укреплен на металлической стойке-пирамиде.

Все элементы станка-качалки: пирамида, редуктор, электродвигатель крепятся к единой раме, которая закрепляется на бетонном фундаменте. Кроме того, все СК снабжены тормозным устройством, необходимым для удержания балансира и кривошипов в любом заданном положении.

Рисунок 11.1 – Схема установки штангового скважинного насоса

Точка сочленения шатуна с кривошипом может менять свое расстояние относительно центра вращения перестановкой пальца кривошипа в то или иное отверстие. Этим достигается ступенчатое изменение амплитуды качаний балансира, т. е. длины хода плунжера.

Поскольку редуктор имеет постоянное передаточное число, то изменение частоты качаний достигается только изменением передаточного числа клиноременной трансмиссии и сменой шкива на валу электродвигателя на больший или меньший диаметр.

Промышленностью выпускается большое число станков-качалок различных типоразмеров (так называемый нормальный ряд) грузоподъемностью на головке балансира от 10 до 200 кН, в соответствии с широким диапазоном глубин и дебитов скважин, которые приходится оборудовать штанговыми установками (ШСНУ).

Типоразмеры СК и их основные параметры регламентируются государственным стандартом.

Штанговый скважинный насос состоит из длинного (2 – 4 м) цилиндра той или иной конструкции. На нижнем конце цилиндра укреплен неподвижный всасывающий клапан. Цилиндр подвешивается на трубах. В нем перемещается поршень-плунжер, выполненный в виде длинной (1 – 1,5 м) гладко обработанной трубы, имеющей нагнетательный клапан, также открывающийся вверх. Плунжер подвешивается на штангах. При движении плунжера вверх жидкость через всасывающий клапан под воздействием давления на приеме насоса заполняет внутреннюю полость цилиндра. При ходе плунжера вниз всасывающий клапан закрывается, жидкость под плунжером сжимается и открывает нагнетательный клапан. Таким образом, плунжер с открытым клапаном погружается в жидкость. При очередном ходе вверх нагнетательный клапан под давлением жидкости, находящейся над плунжером, закрывается. Плунжер превращается в поршень и поднимает жидкость на высоту, равную длине хода. Накапливающаяся над плунжером жидкость достигает устья скважины и через тройник поступает в нефтесборную сеть.

Похожие статьи:

poznayka.org

4.2. Добыча нефти установками штанговых насосов

 

Принудительный подъем нефти из скважин с помощью насосов является наиболее продолжительным в жизни месторождения.

Одним из разновидностей этого способа является добыча нефти установками штанговых глубинных насосов (УШГН).

УШГН представляет собой поршневой насос одинарного действия, шток которого связан колонной штанг с наземным приводом – станком-качалкой. Последний включает в себя кривошипно-шатунный механизм, преобразующий вращательное движение первичного двигателя в возвратно-поступательное движение и сообщает его колонне штанг и плунжеру насоса.

Осуществление способа производится с помощью установки, схема которой приведена. Подземное оборудование составляют: насосно-компрессорные трубы, насос, штанги, устройства для борьбы с осложнениями.

К наземному оборудованию относится привод (станок-качалка), устьевая арматура, рабочий монифольд.

Установка работает следующим образом. При ходе плунжера вверх в цилиндре насоса снижается давление и нижний (всасывающий) клапан поднимается, открывая доступ жидкости (процесс всасывания). Одновременно столб жидкости, находящийся над плунжером, прижимает к седлу верхний (нагнетательный) клапан, поднимается вверх и выбрасывается из НКТ в рабочий монифольд (процесс нагнетания).

При ходе плунжера вниз верхний клапан открывается нижний клапан давлением жидкости закрывается, а жидкость находящаяся в цилиндре, перетекает через полый плунжер в НКТ.

Рассмотрим устройство и работу отдельных узлов УШГН.

 

4.2.1.Привод

 

Приводы классифицируются: а) по роду используемой энергии – на механические, гидравлические, пневматические; б) по числу обслуживаемых скважин – на индивидуальные и групповые; в) по типу первичного двигателя – на электрические и тепловые.

Станок-качалка является индивидуальным приводом штангового глубинного насоса, спускаемого в скважину и связанного с приводом гибкой механической связью – колонной штанг.

В конструктивном отношении станок-качалка представляет собой четырехзвенный механизм, преобразующий вращательное движение первичного двигателя в возвратно-поступательное движение колонны штанг.

Устройство серийного станка-качалки по ГОСТу 5866-76 описывается следующим образом.

Крутящий момент от электродвигателя через клиноременную передачу передается на ведущий вал редуктора, а затем и на ведомый вал. На последнем укрепляется кривошип с противовесами. Кривошип с помощью шатунов и траверсы связан с балансиром, качающимся на опоре, укрепленной на стойке. Балансир со стороны переднего плеча снабжен откидной головкой, на которой монтируется канатная подвеска.

Станок-качалка (СК) состоит из ряда самостоятельных узлов.

Рама предназначена для установки на ней всего оборудования СК и выполняется из профильного проката в виде двух полозьев, соединенных поперечниками, и имеет специальную подставку под редуктор. В раме имеются отверстия для крепления к фундаменту.

Стойка является опорой для балансира и выполняется из профильного проката в виде четырехгранной пирамиды. Ноги стойки связаны между собой поперечинами. Снизу стойка крепится к раме сваркой или болтами, сверху несет плиту для крепления оси балансира с помощью двух скоб.

Балансир предназначен для передачи возвратнопоступательного движения колонне штанг. Выполняется из профильного проката двутаврового сечения и имеет однобалочную или двухбалочную конструкцию. Со стороны скважины балансир заканчивается поворотной головкой.

Опора балансира - ось, оба конца которой установлены в сферических роликоподшипниках, расположенных в чугунных корпусах. К средней части оси, имеющей квадратное сечение, приварена планка, через которую опора балансира с помощью болтов соединяется с балансиром.

Траверса выполняет роль связующего звена между кривошипно-шатунным механизмом и балансиром и конструктивно выполняется в виде прямолинейной балки из профильного проката. Крепление к балансиру шарнирное при помощи сферического роликоподшипника.

Шатун - трубная заготовка со специальными головками по концам; с помощью верхней головки шатун соединяется пальцем с траверсой, нижней – кривошипом через палец и сферический подшипник.

Кривошип – основной элемент кривошипно-шатунного механизма, предназначенный для преобразования вращательного движения вала редуктора в возвратно-поступательные колонны штанг. Выполнен в виде прямоугольных пластин с отверстиями для крепления к шатунам и ведомому валу редуктора. Снабжен пазами для установки и перемещения противовесов.

Канатная подвеска является гибком звеном между колонной штанг и балансиром. Состоит из двух траверс – верхней и нижней, разделенных втулками зажимов канатов. На верхней траверсе лежит узел крепления полированного штока. Траверсы могут быть раздвинуты винтами для установки динамографа.

Клиноременная передача СК предусматривает применение клиновых ремней типов О,А,Б,В,Г. Правильный выбор типа ремня обеспечивает долговечность работы передачи.

Шкивы выполняют быстросменными за счет конусной расточки тела и применения конусной втулки, закрепляемой гайкой.

Поворотные салазки являются рамой для двигателя, крепящейся в наклонном положении, что обеспечивает изменение межцентрового расстояния между осями валов и, следовательно, натяжение ремней.

Тормоз двух колодочной конструкции укрепляется на тормозном барабане и приводится в действие ходовым винтом. Рукоятка тормоза в целях безопасности вынесена в конец рамы станка-качалки.

Приводом станка качалки является трехфазный, асинхронный электродвигатель во влагоморозостойком исполнении с короткозамкнутым ротором с кратностями пускового и максимального момента соответственно 1,8…2,0 и 2,2…2,5.

Основная синхронная частота вращения – 1500 об/мин. Для получения необходимого числа ходов точки подвеса штанг могут быть применены электродвигатели с частотой вращения 750 или 1000 об/мин серии АОП.

Кроме описанного привода, основой которого является качающийся балансир, в РФ и за рубежом созданы и применяются несколько конструкций без балансирных приводов. Преимущества этих приводов заключаются в уменьшении общего габарита привода, улучшении условий обслуживания и снижении металлоемкости, повышении транспортабельности и монтаже способности.

Принципиальный отличительной особенностью всех без балансирных СК является отсутствие качающегося балансира.

Примером без балансирного механического привода является следующая конструкция. Она состоит из опорной стрелы, на верхнем конце которой расположено сдвоенное цепное колесо и роликовые цепи. Концы цепей крепятся к траверсе. К последней присоединены шатуны. Редуктор имеет привод от электродвигателя. На ведомом валу редуктора укреплены V-образный формы с отверстиями для крепления шатунов. На окружности диска устанавливаются противовесы.

За рубежом применяются несколько типов без балансирных приводов, одной из разновидностей которых является следующий. Он состоит из стальной фермы, устанавливаемой на устье скважины. На верхней площадке фермы установлен приводной двигатель с реверсивным редукторов, на выходном валу которого укреплен шкив. Через шкив перебрасывается со стороны фермы уравновешивающий груз, с другой – канат с полированной штангой. Ферма устанавливается на рельсы и может быть откатана при подземном ремонте. Реверсивный редуктор управляется пультом: при достижении полированным штоком крайних положений пульт дает команду на изменение направления вращения.

Выпускаются такие СК в США фирмой «Ойл вэл» имеют следующие характеристики: длина хода до 10,2 м, грузоподъемность до 157 кН, число ходов до 2 мин-1, мощность до 30 кВт.

За рубежом получили применение гидравлические приводы штанговых насосов. Они включают в себя подъемный цилиндр, уравновешивающий цилиндр, соединенные между собой системой маслопроводов. Гидравлическая силовая часть состоит из насоса и распределительного устройства. Насос нагнетает в подъемный цилиндр масло, в результате чего поршень, а затем и колонна штанг поднимаются. При верхнем положении срабатывает распределительное устройство и масло вытекает из-под поршня.

Уравновешивание гидравлического привода происходит путем перетока масла из подпоршневой полости цилиндра при его ходе вниз в подпоршневую  полость цилиндра и подъем его поршня. Затем при ходе вверх происходит обратный процесс: масло из под поршневой полости цилиндра перетекает в подпоршневую полость цилиндра, помогая перемещению его поршня вверх.

 

 

studfiles.net

Добыча нефти скважинными штанговыми насосами.

Тема программы 2.5.2 Добыча нефти скважинными штанговыми насосами.

Тема занятия Насосные штанги. Оборудование устья насосных скважин. Индивидуальный привод штангового насоса. Размерный ряд станков-качалок по ГОСТу, их выбор. Регулирования длины хода сальникового штока и числа качаний в балансирных станках-качалках.

Прекращение или отсутствие фонтанирования скважин вынуждало искать другие способы подъема нефти на поверхность. Вначале это были тартальные способы, при которых жидкость поднималась чисто механическими устройствами: колодезная добыча, тартание желонкой, поршневание. В 1897 г. Впервые был применен эрлифт. Однако он не смог конкурировать с штанговыми скважинными насосами, которыми по настоящее время оборудовано около 50% всего фонда скважин.

Схема штанговой скважинкой насосной установки и основное оборудование

Отличительная особенность штанговой скважинной насосной установки (ШСНУ) состоит в том, что в скважине устанавливают плунжерный (поршневой) насос, который приводится в действие поверхностным приводом посредством колонны штанг (рис. 11.1).

ШСНУ включает оборудование: а) наземное — станок-качалку (СК), оборудование устья; б) подземное — насоснокомпрессорные трубы (НКТ), насосные штанги (НШ), штанговый скважинный насос (ШСН) и различные защитные устройства, улучшающие работу установки в осложненных условиях.

Основными элементами СК являются стойка 17 с балансиром 16, два кривошипа 21 с двумя шатунами 19, редуктор 22, клиноременная передача 24, электродвигатель 25 и блок управления 28, который подключается к промысловой линии силовой электропередачи.

Рис. 11.1. Схема штанговой скважинно-насосной установки:

1 — эксплуатационная колонна ; 2 — всасывающий клапан; 3 — цилиндр насоса; 4 — плунжер; 5 — нагнетательный клапан; S — насосно-компрессорные трубы; 7 — насосные штанги; 8 — крестовина; 9 — устьевой патрубок; 10 — обратный клапан для перепуска газа; 11 — тройник ; 12 — устьевой сальник; 13 — устьевой шток; 14 — канатная подвеска; 15 — головка балансира; 16 — балансир; 17 — стойка; /5 — балансирный груз; 19 — шатун ; 20— кривошипный груз; 21 — кривошип ; 22 — редуктор ; 23 — ведомый шкив; 24 — клиноременная передача ; 25 — электродвигатель на поворотной салазки; — ведущий шкив; 27 — рама; 28 — блок управления

ШСН СОСТОИТ ИЗ цилиндра 3, плунжера 4, всасывающего 2 и нагнетательного 5 клапанов. Цилиндр ШСН крепится к НКТ 6. На нижнем конце цилиндра установлен неподвижный всасывающий клапан, открывающийся при ходе плунжера вверх. Плунжер пустотелый (со сквозным каналом) имеет нагнетательный шариковый клапан, открывающийся при ходе плунжера вниз.

Электродвигатель 25 через клиноременную передачу 24 и редуктор 22 придает двум массивным кривощипам 21, расположенным с двух сторон редуктора, круговое движение. Кривощипно-шатунный механизм в целом превращает круговое движение в возвратно-поступательное движение балансира 16, который качается на опорной оси, укрепленной на стойке 17. Балансир сообщает возвратно-поступательное движение щтангам 7 и через них плунжеру 4 ШСН.

При ходе плунжера вверх нагнетательный клапан под действием жидкости закрывается и вся жидкость, находящаяся над плунжером, поднимается вверх на высоту, равную длине хода плунжера. В это время скважинная жидкость через всасывающий клапан заполняет цилиндр насоса.

При ходе плунжера вниз всасывающий клапан закрывается, жидкость под плунжером сжимается, и открывается нагнетательный клапан. В цилиндр погружаются штанги, связанные с плунжером. Таким образом, ШСН — поршневой насос одинарного действия, а в целом комплекс из насоса и штанг — двойного действия.

Жидкость из НКТ вытесняется через тройник 11 в нефтесборный трубопровод.

Насосы разделяются на невставные или трубные и вставные. Основные особенности их состоят в следующем.

Невставные насосы. Цилиндр спускается в скважину на насосных трубах без плунжера. Плунжер спускается отдельно на насосных штангах. Плунжер вводится в цилиндр вместе с подвешенным к плунжеру всасывающим клапаном. Чтобы плунжер довести до цилиндра насоса без повреждений через трубы, последние должны иметь внутренний диаметр больше наружного диаметра плунжера (примерно на 6 мм). Для извлечения невставного насоса в случае замены или ремонта необходимо сначала извлечь штанги с висящим на их конце плунжером, а затем насосные трубы с висящим на их конце цилиндром насоса.

Вставные насосы. Цилиндр в сборе с плунжером и клапанами спускается на штангах. В этом случае на конце насосных труб заранее устанавливается специальное посадочное устройство - замковая опора, на которой происходит посадка и уплотнение насоса. Для извлечения вставного насоса в случае ремонта достаточно извлечь только штанги, вместе с которыми извлекается весь насос.

Рис. 10.2. Принципиальная схема скважинных штанговых насосов:

а - невставной насос с штоком типа НГН-1; б - невставной насос с ловителем типа НГН-2;

1 - нагнетательные клапаны, 2 - цилиндры, 3 - плунжеры; 4 - патрубки-удлинители; 5 - всасывающие клапаны, 6 - седла конусов, 7 - захватный шток, 8 - второй нагнетательный клапан, 9 - ловитель, 10 - наконечник для захвата клапана; в - вставной насос типа НГВ-1: 1 - штанга, 2 - НКТ, 3 - посадочный конус, 4 - замковая опора, 5 - цилиндр, 6 - плунжер, 7 - направляющая трубка

Поскольку при вставном насосе через трубы данного диаметра пропускается не только плунжер, но и цилиндр вместе с кожухом, то диаметр плунжера вставного насоса должен быть намного меньше диаметра трубного. Поэтому подача вставного насоса при трубах данного диаметра всегда меньше подачи невставного.

Общая характеристика насосов. На рис. 10.2 показаны принципиальные схемы невставных (рис. 10.2, а, б) и вставного (рис. 10.2, в) насосов.

Как видно из рисунка (см. рис. 10.2, а), в НГН-1 всасывающий клапан 5 держится в седле конуса 6 и соединен с плунжером 3 специальным штоком 7. Это позволяет при подъеме штанг, а следовательно, и плунжера сразу извлечь всасывающий клапан 5. Такая операция необходима не только для замены или ремонта клапана, но и для спуска жидкости из насосных труб перед их подъемом. Однако наличие длинного штока не позволяет установить в нижней части плунжера второй нагнетательный, клапан для уменьшения вредного пространства и повышения надежности работы насоса. Кроме того, наличие штока внутри плунжера ограничивает ход последнего, и в насосах этой конструкции он не превышает 1 м.

В насосах НГН-2 (см. рис. 10.2, б) - два нагнетательных клапана. Это существенно уменьшает (на объем плунжера) объем вредного пространства и повышает коэффициент наполнения при откачке газированной жидкости. У этих насосов для посадки и извлечения всасывающего клапана 5 имеется специальный ловитель 9, которым захватывается шток 10. После спуска плунжера на штангах и посадки всасывающего клапана на конус поворотом штанг ловитель разъединяется от штока, и плунжер может производить возвратно-поступательное движение с любой допускаемой длиной цилиндра величиной хода. Перед подъемом насоса для его ремонта необходимо ловителем захватить шток конуса. Это осуществляется поворотом штанг по часовой стрелке при посаженном плунжере до отказа. Если операция ловли конуса неудачна, то насосные трубы приходится поднимать вместе с жидкостью, что сильно осложняет работу бригады текущего ремонта.

Оборудование устья скважины

Устьевое оборудование штанговой насосной скважины предназначено для герметизации затрубного пространства и отвода продукции скважины.

В связи с широким распространением однотрубной системы сбора продукции скважин при централизованных установках по сепарации газа и замеру дебитов сильно возросли давления на выкидах насосных установок В некоторых случаях возникает необходимость иметь на устье скважин (удаленные скважины, высокие вязкости жидкости) давления, доходящие до 4 МПа. Это усложняет конструкцию устьевого оборудования и повышает к нему технические требования. Типичной обвязкой устья скважины, оборудованной ШСНУ, нашедшей широкое применение на нефтяных промыслах восточных районов, является конструкция, показанная на рис. 10.7.

Рис. 10.7. Типичное оборудование устья скважины для штанговой насосной установки:

1 - колонный фланец; 2 - планшайба; 3 - НКТ; 4 - опорная муфта; 5 - тройник, 6 - корпус сальника,

7 - полированный шток, 8 - головка сальника, 9 - сальниковая набивка

Устьевой сальник герметизирует выход полированного штока. В полость сальника укладываются разрезные кольца из прорезиненного тканевого ремня или специальной нефтестойкой резины, которые уплотняются заворачиванием верхней нажимной муфты. Часто причиной нарушения герметичности

устьевого сальника является несовпадение центра сальника с центром канатной подвески штанг или ее отклонение от вертикали при движениях балансира. Такие отклонения в той или иной мере всегда имеют место при недостаточной точности установки станка-качалки, балансира или их нарушении в процессе длительной работы.

Это обусловило появление устьевых сальников с самоустанавливающейся головкой с шаровым шарнирным соединением. Такой сальник разработан Азинмашем и рассчитан на давление до 4,0 МПа. Шаровая головка сальника допускает отклонение его оси от вертикали в любую сторону до 3°. Герметичность в шаровом сочленении обеспечивается уплотнительным кольцом из нефтестойкой резины. Шаровое сочленение увеличивает срок службы сальниковой набивки и полированного штока. При необходимости периодически сальниковую набивку подтягивают завинчиванием крышки головки.

Канатная подвеска

Рис. 10.8. Канатная подвеска сальникового штока

Кроме того, с помощью канатной подвески регулируется посадка плунжера в цилиндр насоса для предупреждения ударов плунжера о всасывающий клапан или выхода плунжера из цилиндра.

Канатная подвеска (рис. 10.8) состоит из нижней 1 и верхней 4 траверс. В нижнюю траверсу заделаны с помощью специальных зажимов 2 концы канатной петли 7. На верхней траверсе укреплен клиновой зажим 5, удерживающий сальниковый шток. По краям нижней траверсы имеются винты 3 для подъема верхней траверсы при установке в их разъем динамографа. Элементы конструкции канатных подвесок, входящих в комплект станка-качалки, стандартизованы. Канатная петля одевается на специальный ролик, имеющийся на головке балансира.

Изменение места захвата сальникового штока клиновым захватом достигается перестановкой верхней траверсы вдоль штока на требуемое место и повторной затяжкой клинового захвата муфтой 6.

Станки-качалки (СК)

На нефтяных промыслах в эксплуатации имеются СК различных типоразмеров и конструкций. В настоящее время СК выпускаются по ГОСТ 5866 - 76. В механическом и кинематическом отношении они достаточно совершенны (рис. 11.1). В отличие от предыдущих СК новые конструкции имеют не откидную головку балансира, а поворотную, что облегчает работу бригады подземного ремонта н сокращает возможность травматизма. Кроме того, предусматривается плавное, механизированное перемещение кривошипных противовесов и ряд других изменений. ГОСТ 5866 - 76 предусматривает широкий ассортимент СК (табл. X.5). В шифре СК указывается грузоподъемность, максимальный ход и допустимый момент на валу редуктора.

Пример шифра СКЗ - 1,2 - 630. Это означает: грузоподъемность станка-качалки - 3 т, максимальный ход - 1,2 м, наибольший крутящий момент на валу редуктора - 630 кгс-м. Таким образом, в самом шифре указываются важнейшие характеристики СК (табл. 10.5).

Новые СК имеют только роторное уравновешивание, двухступенчатые редукторы с шевронными зубчатыми колесами с зацеплением Новикова (кроме СК2 и СКЗ, для которых допускается эвольвентное зацепление).

Тихоходный вал редуктора имеет два шпоночных паза, расположенных под углом 90°. Это позволяет переставлять кривошип на 90º и перераспределять зону износа зубьев редуктора на менее изношенные участки. Такая мера увеличивает сроки службы редуктора.

Новые СК изготавливаются при более жестких технических требованиях к балансировке деталей, точности их изготовления и центровки плоскостей балансира, кривошипов и вертикальности движения канатной подвески.

Техническая характеристика станков-качалок Таблица 10.5

Станок-качалка

Длина хода штока, м

Кинематические размеры, м

Наибольший радиус кривошипа R

Габаритные размеры, м

Масса комплекта, кг

Переднее плечо k1

Заднее плечо k

Длина шатуна l

дальнего отверстия кривошип

Длина l

Ширина B

Высота H

1 СК2-0,6-250

0,3; 0,45; 0,6

0,74

0,74

0,84

0,295

0,365

3,15

1,15

2,0

1600

2 СКЗ-1,2-630

0,6; 0,75; 0,9; 1,05; 1,2

1,2

1,2

1,43

0,57

1,0

4,2

1,35

3,3

3850

3 СК4-2,1-1600

0,9; 1,2; 1,5; 1,8; 2,1

2,1

1,5

1,8

0,72

1,3

5,9

1,7

4,8

7200

4 СК5-3-2500

1,3; 1,8; 2,1; 2,5; 3,0

3,0

2,1

2,5

1,0

1,6

7,4

1,85

5,55

9900

Продолжение Таблицы 10.5

5 CK6-2,1-2500

0,9; 1,2; 1,5; 1,8; 2,1

2,1

2,1

2,5

1,0

1,6

6,5

1,85

5,1

9600

6 CK8-3,5-4000

1,8; 2,1; 2,5; 3,0; 3,5

3,5

2,5

3,0

1,2

1,95

8,5

2,25

6,65

15100

7 CK12-2,5-4000

1,2; 1,5; 1,8; 2,1; 2,5

2,5

2,5

3,0

1,2

1,95

7,5

2,25

6,4

14800

8 CK8-3,5-5600

1,8; 2,1; 2,5; 3,0; 3,5

3,5

2,5

3,0

1,2

1,95

8,5

2,25

6,65

15600

9 CKIO-3-5600

1,5; 1,8; 2,1; 2,5; 3,0

3,0

2,5

3,0

1,2

1,95

8,0

2,25

6,65

15450

10 CKIO-4,5-8000

2,3; 2,7; 3,3; 3,9; 4,5

4,5

3,5

4,2

1,67

2,36

10,55

2,6

9,00

24900

11 CK12-3,5-8000

1,8; 2,1; 2,5; 3,0; 3,5

3,5

3,5

4,2

1,67

2,36

9,55

2,6

8,5

24800

12 CK15-6-12500

3,0; 3,5; 4,5; 5,2; 6,0

6,0

4,2

5,0

2,0

3,2

13,2

3,1

11,5

34800

13 CK20-4,5-12500

2,3; 2,7; 3,8; 3,9; 4,5

4,5

4,2

5,0

2,0

3,2

11,7

3,1

10,7

34500

Кроме описанных балансирных станков-качалок существует много других индивидуальных приводов для штанговых насосных установок, не получивших, однако, широкого распространения. К числу таких приводов можно отнести безбалансирные станки-качалки, в которых возвратно-поступательное движение штанг осуществляется с помощью цепи или канатов, перекинутых через шкивы-звездочки, укрепленные на наклонной к устью скважины пирамиде-опоре. Канатная подвеска (или цепь) прикрепляется к штангам, а другим концом к кривошипу редуктора.

При вращении вала редуктора и укрепленных на валу кривошипов канаты подвески и колонна штанг совершают возвратно-поступательное движение. Отсутствие тяжелого высокоподнятого на пирамиде-стойке балансира позволяет уменьшить массу безбалансирных станков и несколько улучшить кинематику привода. Безбалансирные СК уравновешиваются с помощью противовесов, укрепляемых на кривошипе, как и у балансирных СК. Однако центр тяжести противовеса имеет по отношению к точке прикрепления шатунов угловое смещение, зависящее от наклона линии, соединяющей центры вращения шкивов на опоре и оси главного вала кривошипа.

Существуют балансирные СК с гидропневматическим и пневматическим уравновешиванием. Эти станки более компактные, чем обычные балансирные, имеют более плавный ход, меньшие инерционные нагрузки. Однако они сложнее в изготовлении, дороже и, несмотря на некоторое уменьшение габаритных размеров, более металлоемки. Уравновешивание в них достигается как за счет использования роторных противовесов, так и за счет сжатия воздуха в специальном цилиндре с перемещающимся в нем поршнем. Кроме того, на СК с пневматическим уравновешиванием обязательно имеется небольшой одноцилиндровый компрессор для подкачки воздуха в систему уравновешивания.

multiurok.ru

Добыча нефти штанговыми насосами — КиберПедия

Установка скважинных штанговых насосов (УСШН), их типоразмеры. Глубинные штанговые насосы. Насосно-компрессорные трубы, насосные штанги. Насосное устьевое оборудование.

Технологический режим работы УСШН. Исследование работы УСШН: динамометрирование, замер статического и динамического уровня, дебитометрия. Регулирование параметров работы УСШН.

Методы повышения коэффициента наполнения и подачи штангового насоса и коэффициента полезного действия УСШН.

Борьба с вредным влиянием на работу штангового насоса песка и газа. Осложнения при эксплуатации насосных скважин. Особенности эксплуатации УСШН в наклонных и искривленных скважин. Технологический режим работы УСШН при периодической откачке жидкости. Управление работой УСШН. Станции и блоки управления электродвигателями УСШН.

Освоение скважины со штанговыми насосами после подземного и капитального ремонта. Межремонтный период работы скважины (МРП), технические и технологические мероприятия, обеспечивающие нормативный МРП. Техника безопасности при обслуживании УСШН.

Добыча нефти бесштанговыми насосами

Установки погружных центробежных электрических насосов (УПЦЭН), их компановка, схема и принцип действия, наземное и подземное оборудование. Гидравлическая характеристика насоса. Технологический режим работы УПЦЭН. Исследование скважины, оборудованной УПЦЭН. Защита центробежного электронасоса от песка и газа. Осложнения при эксплуатации скважин с УПЦЭН. Управление УПЦЭН. Техника безопасности при обслуживании УПЦЭН.

Винтовые, гидропоршневые, электродиафрагменные, струйные насосы, их устройство, принцип действия, технические характеристики, область применения.

Одновременная эксплуатация двух и более пластов в одной скважине

Совместная и раздельная эксплуатация пластов. Применяемое оборудование. Исследование скважин при одновременной эксплуатации. Технологический режим работы скважин.

Методы увеличения продуктивности скважин

Факторы, снижающие продуктивность скважины: кальматация призабойной зоны пласта в процессе вскрытия и освоения продуктивного горизонта, разрушение ПЗП, прорыв пластовой воды и газа, отложения парафина, смол, асфальтенов, смыкание естественных трещин при освоении с большими депрессиями на пласт. Способы и методы увеличения проницаемости ПЗП и продуктивности скважин. Кислотные обработки. Тепловые методы прогрева. Гидравлический разрыв пласта. Гидропескоструйная и дополнительная перфорация. Щелевая разгрузка пласта. Термоциклические обработки. Агрегаты и спецтранспорт при проведении методов интенсификации притока пластовой жидкости. Эффективность методов воздействия на ПЗП.

Подземный ремонт скважин

Виды подземных ремонтов скважин. Подготовительные работы перед ремонтом. Глушение скважины. Подъем подземного оборудования. Технические средства для подземного ремонта. Спускоподъемные операции и их механизация. Освоение скважины после подземного ремонта. Техника безопасности и охрана окружающей среды при ремонте скважин.

Капитальный ремонт скважин

Виды капитальных ремонтов. Исследования перед ремонтом скважины. Технические средства и инструмент, используемые при капитальном ремонте. Глушение скважины. Ловильные работы в скважинах, исправление повреждений в эксплуатационной колонне, изоляционные работы. Освоение скважины после ремонта. Ликвидация скважин. Техника безопасности и охрана окружающей среды при проведении капитального ремонта скважин.

Эксплуатация нагнетательных скважин

Оборудование нагнетательных скважин, наземное и подземное. Освоение нагнетательных скважин. Исследование скважин. Повышение приемистости нагнетательных скважин. Обслуживание нагнетательных скважин.

7.5.2. Автоматизация производственных процессов в добыче нефти и газа

Методы и средства автоматического контроля технологических параметров в разработке и эксплуатации нефтяных и газовых месторождений

Классификация средств измерений. Государственная система промышленных приборов и средств автоматизации.

Измерение давления. Манометры трубчато-пружинные, геликсные, мембранные, их устройство, принцип действия и применение. Электроконтактные манометры.

Измерение температуры. Манометрические термометры. Электрические термометры сопротивления. Измерение температуры с автоматическими уравновешенными мостами. Термоэлектрические термометры и их применение.

Измерение объема, массы и расхода вещества. Расходомеры переменного перепада давления. Дифференциальные манометры сильфонные самопишущие ДСС-712. Тахометрические расходомеры: ТОП, НОРД, Турбоквант. Ультразвуковые расходомеры СВУ-1.

Измерение уровня жидкости в резервуарах и технологических аппаратах. Механические уровнемеры: поплавковые УДУ-5, УДУ-10; буйковые – УБ-Э. Пьезометрические уровнемеры: уровнемеры «Радиус», «Карандель». Акустические и радиоактивные уровнемеры.

Специальные приборы контроля параметров нефтяных и газовых скважин. Измерение давления в скважинах. Глубинные манометры геликсные МГН-2. Измерение температуры в скважинах. Измерение расхода в скважине. Глубинные расходомеры с турбинкой РГД-3, РГД-4. Звукометрические методы и аппаратура для измерения уровня жидкости в скважине.

Контроль работы скважинного насоса методом динамометрии.

Автоматические станции для исследования скважин АИСТ, Азинмаш-11 и др. Специальные приборы контроля процесса добычи, подготовки нефти и природного газа, их учета.

Измерение плотности нефти и нефтепродуктов. Измерение вязкости нефти и нефтепродуктов. Анализаторы содержания солей в нефти. Датчики межфазного уровня жидкости. Автоматический сброс пластовой воды из технологических аппаратов.

Автоматизированные системы управления технологическими процессами добычи, сбора и подготовки нефти и газа

Современные принципы построения систем автоматического управления нефтегазодобывающими предприятиями. Системы автоматизации нефтяных скважин. Автоматизация скважин, оборудованных штанговыми глубинными насосами. Режим работы скважин. Самозапуск скважин. Отключение электродвигателя станка-качалки при аварийных состояниях оборудования: обрыве фаз, ремней, повышении или понижении давления в выкидном нефтепроводе от установленных значений, токовых перегрузках и коротких замыканиях электродвигателя. Автоматизация скважин, оборудованных электропогружными насосами. Отключение погружного электродвигателя при отклонении напряжения питания от номинальных значений, перегрузках и недогрузках, автоматическое повторное включение при восстановлении уровня жидкости в скважине, непрерывный контроль сопротивления изоляции кабеля и отключение двигателя при значительных снижениях давления в напорном нефтепроводе скважины и др.

Автоматизация скважин, оборудованных электродиафрагменными и электровинтовыми насосами.

Автоматизированные групповые замерные установки, их устройство и принцип работы. Технологическая схема замера дебита скважин.

Автоматизация дожимных насосных станций. Автоматическое регулирование производительности ДНС, контроль за уровнем жидкости в буферных емкостях, включение рабочих и резервных насосов. Автоматическая защита ДНС при аварийных уровнях нефти, повышения давления и др.

Автоматизированные сепарационные установки. Автоматическое регулирование уровня нефти в сепараторах, регулирование давления в газовой линии. Регуляторы уровня и давления прямого действия.

Автоматизированные блочные установки подготовки нефти. Система автоматики безопасности подогрева газонефтяной смеси в трубчатых печах.

Автоматическое измерение массы товарной нефти. Станции учета нефти КОР-МАС и особенности их применения в производственных условиях.

Автоматизация нефтеперекачивающих насосных станций. Технологическая схема и аварийная защита агрегатов при нарушении технологических регламентов.

Автоматизированные блочные кустовые насосные станции. Блок автоматического управления, защиты и контроля параметров технологического оборудования насосных блоков. Выбор режима работы оборудования насосной станции, учет закачиваемого агента.

Автоматизация добычи и промысловой подготовки газа. Автоматическое управление производительностью промысла. Телемеханизация технологических процессов добычи нефти и газа. Агрегатная система телемеханики. Устройство контролируемых пунктов управления. Телеизмерение дебита нефтяных скважин. Системы телемеханики для технологических объектов газодобывающих предприятий.

Сбор и подготовка скважинной продукции

Внутрипромысловые схемы сбора и транспорта скважинной продукции. Основные объекты системы нефтегазосбора. Разделение продукции скважин на промысле. Дегазация и обезвоживание нефти. Обессоливание нефти. Технологические установки подготовки нефти, режим их работы. Особенности подготовки тяжелых высоковязких нефтей. Подготовка и утилизация нефтяного газа. Подготовка промысловых вод и их утилизация. Показатели и нормы качества товарной нефти и промысловых вод. Нефтепромысловые резервуары. Насосные станции. Замер и учет добычи нефти, газа и воды по скважинам. Учет товарной продукции, применяемое оборудование и технические средства.

Осложнения при эксплуатации системы нефтегазосбора, трубопроводов и установок подготовки нефти, газа и воды. Методы борьбы с осложнениями. Коррозия промысловых трубопроводов и оборудования. Методы защиты от коррозии, ингибиторы коррозии.

Охрана окружающей среды при сборе и подготовке скважинной продукции.

7.5.3. Организация и управление производственными процессами

Структура нефтегазодобывающей организации, функции цехов основного и вспомогательного производства. Организация диспетчерской службы. Организация сбыта нефти и газа.

Первичная учетная и отчетная документация в организации. Паспортизация скважин и оборудования. Технико-экономические показатели деятельности организации. Баланс расходов и доходов, прибыль и рентабельность деятельности организации. Распределение прибыли. Оплата труда и материальное стимулирование. План технического развития организации.

Динамика основных технико-экономических показателей за последние три года. Организация службы охраны труда и окружающей среды. Причины травматизма и профессиональных заболеваний. Организация пожарной охраны, безопасности жизнедеятельности и службы безопасности в организации.

 

7.6. ФОРМЫ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ (ПО ИТОГАМ ПРАКТИКИ)

Промежуточная аттестация по итогам производственной практики проводится в форме собеседования и дифзачета. По возвращении с производственной практики в образовательную организацию студент вместе с научным руко­водителем от профильной кафедры обсуждает итоги практики и собранные материалы. При этом формулируется тема работы. В дневнике по производственной практике руко­водитель дает отзыв о работе студента, ориентируясь на его доклад и отзыв руко­водителя от производственной организации, приведенный в дневнике. Студент пишет краткий отчет о практике, который включает в себя общие сведе­ния об изучаемом объекте. Защита отчета о производственной практике происходит перед специальной комисси­ей кафедры. При сдаче зачета обучающемуся задаются вопросы, сформулированные так, чтобы, по возможности, проверить его знания, относящиеся к различным компетенциям, формируемым в результате изучения дисциплины, например:

1. Методы построения геолого-стратиграфического и литологического разреза нефтегазового месторождения (ПК-1,3).

2. Основные методы выбора технологического оборудования (ПК-1,3,6)

3. Технологии и технические средства добычи нефти и газа (ПК-3, 6, 8, 12).

4. Оборудование и методы интенсификации добычи нефти (ПК-3,6,12).

5. Оборудование и методы повышения нефтеотдачи пласта (ПК-3,6,12).

6. Осложнения и аварии при добыче нефти и газа (ПК-6,12).

7. Основные правила безопасного ведения работ в процессе добыче нефти и газа (ПК-6,8,16).

 

 

7.7. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ПРОВЕДЕНИЮ ПРОИЗВОДСТВЕННОЙ ПРАКТИКИ (ПО ПОЛУЧЕНИЮ ПРОФЕССИОНАЛЬНЫХ УМЕНИЙ И ОПЫТА ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ, В ТОМ ЧИСЛЕ ПРОИЗВОДСТВЕННО-ТЕХНОЛОГИЧЕСКАЯ)

В процессе проведения производственной практики применяются стандартные образовательные и производственные технологии в форме непосредственного участия обучающегося в работе нефтегазового предприятия, занимающихся добычей нефти и газа, промысловым контролем и регулированием извлечения углеводородов на суше. Проводятся разра­ботка и опробование различных методик проведения соответствующих работ, про­водится первичная обработка и первичная или окончательная интерпретация данных, составляются рекомендации и предложения. При этом может быть использован раз­личный арсенал вычислительной техники и программного обеспечения.

Во время прохождения производственной практики студент обязан вести индивидуальную книжку по практике, в которой он отражает в хронологическом порядке ход выполнения производственного задания, а также записывает полученные сведения о наблюдениях, измерениях и других видах самостоятельно выполненных работ. Дневник может вестись в электронном виде с использованием персонального компьютера.

Формами проведения практики могут быть:

- самостоятельная работа обучающихся с библиотечным фондом и Интернет - ресурсами для подготовки отчета по практике;

- практика в качестве стажеров/практикантов на нефтегазодобывающих предприятиях;

- изучение технологических процессов добычи нефти и газа в реальных производственных условия ОАО «Удмуртнефть» и других предприятий.

В отчете о прохождении производственной практики должны найти отражение следующие структурные элементы:

- Титульный лист (Приложение 4).

- Введение:

• Цель, место, дату начала и продолжительность практики.

- Основная часть:

• описание соответствующего подразделения нефтяной компании, где проходит практика;

• перечень основных работ и заданий, выполненных в процессе практики;

• описание выполненной индивидуальной работы и полученные результаты;

• вопросы охраны труда и промышленной безопасности;

• вопросы охраны недр и окружающей среды;

• краткие ответы на вопросы к отчету по практике для студентов, работающих или замещающих на соответствующих должностях (Приложение 7).

- Заключение:

• характеристика навыков и умений, приобретенных на практике.

• впечатления от практики

- Список использованных источников.

- Приложения (при наличии).

 

Учебно-методическое обеспечение самостоятельнойработы студентов на производственной практике.

В процессе производственной практики студент изучает технологии, используемые в процессе добычи нефти и газа, промыслового контроля и регулирования извлечения углеводородов на суше, знакомится с организацией производства, изучает функции и формы работы вспомогательных подразделений нефтегазового предприятия. При этом особое внимание уделяется:

● изучению содержания оперативного инженерно-технического обеспечения технологических процессов при добыче нефти и газа, промысловом контроле и регулировании извлечения углеводородов на суше;

● сбору исходной информации для контрольных работ по профильным дисциплинам;

● знакомству с методами ведения организационной работы в различных подразделениях нефтегазового предприятия.

Помимо указанных в перечне материалов студент должен привлекать результаты собственных наблюдений, материалов из сообщений и докладов сотрудников организации и т.п.

cyberpedia.su

Тема 5. Добыча нефти глубинными штанговыми насосами.

АрхеологияАрхитектураАстрономияАудитБиологияБотаникаБухгалтерский учётВойное делоГенетикаГеографияГеологияДизайнИскусствоИсторияКиноКулинарияКультураЛитератураМатематикаМедицинаМеталлургияМифологияМузыкаПсихологияРелигияСпортСтроительствоТехникаТранспортТуризмУсадьбаФизикаФотографияХимияЭкологияЭлектричествоЭлектроникаЭнергетика
Студент должен: знать: принцип работы штанговых скважинных насосных установок; наземное и подземное оборудование, применяемое при добыче нефти штанговыми скважинными установками; факторы, влияющие на подачу штанговых скважинных установок; оборудование ШСНУ, установление параметров ее работы; методы борьбы с осложнениями при эксплуатации глубинно-насосных скважин;

уметь: производить расчет и подбор оборудования для скважинной насосной эксплуатации

 

Схема работы штанговой скважинной насосной установки (ШГНУ).

Подземное оборудование ШГНУ: типы, устройство, техническая характеристика, выбор штанговых насосов. Группа посадки и ее выбор. Насосные штанги: техническая характеристика, виды, их область применения.

Наземное оборудование ШГНУ: индивидуальный привод штангового насоса, оборудование устья ШГНУ. Размерный ряд станков-качалок по ГОСТ, их выбор. Регулирование длины хода сальникового штока и числа качаний в балансирных и безбалансирных станках-качалках. Выбор электродвигателя СК.

Нагрузки, действующие на штанги и станок-качалку. Уравновешивание станка-качалки.

Подача штанговых скважинных установок. Факторы, влияющие на подачу штангового скважинного насоса. Коэффициент наполнения и подачи штангового насоса.

Эксплуатация осложненных скважин штанговыми насосами. Борьба с вредным влиянием на работу штангового насоса газа и песка. Газовые, песочные якори и гравийные фильтры, Применение полых штанг. Методы борьбы с отложения Штанговые скребки, центраторы. Назначение, устройство, принцип действия штанговращателя. Эксплуатация наклонных и искривленных скважин. Периодическая эксплуатация малодебитных скважин. Измерение нагрузок на штанги и исследование работы штангового насоса (динамометрирование). Измерение уровня жидкости в скважине (эхометрия, волнометрия). Обслуживание насосных скважин. Эксплуатация штанговых насосов с гидроприводом. Эксплуатация скважин штанговыми винтовыми насосными установками.

Техническая безопасность и противопожарные мероприятия при эксплуатации скважин ШГНУ.

Практическое занятие №5

Литература:1, с.3-8; 2,с.2-6; 3 с. 3-10; 4 с. 119-155, 220.

 

Тема 6. Добыча нефти бесштанговыми насосами.

 

Студент должен: знать: принцип работы штанговых скважинных насосных установок; наземное и подземное оборудование, применяемое при добыче нефти штанговыми скважинными установками; факторы, влияющие на подачу штанговых скважинных установок; оборудование ШСНУ, установление параметров ее работы; методы борьбы с осложнениями при эксплуатации глубинно-насосных скважин;

уметь: производить расчет и подбор оборудования для эксплуатации скважин УЭЦН

 

Схема установки погружных электрических центробежных насосов (УЭЦНМ), область их приОсновные узлы установки и их назначение. Техническая характеристика УЭЦНМ. Классификация УЭЦНМ, по напору, подаче, габариту и исполнению. Методика подбора УЭЦНМ для скважин. Оборудование устья скважин. Монтаж и эксплуатация УЭЦНМ. Контроль параметров работы установки в процессе эксплуатации. Пуск установки ЭЦНМ и вывод ее на режим после подземного ремонта. Влияние газа на работу УЭЦНМ и применение газосепараторов, снижающих влияние газа. Эксплуатация осложненных скважин бесштанговыми насосами. Технические и технологические мероприятия, обеспечивающие увеличение межремонтного периода работы скважин, Винтовые насосы для добычи вязкой нефти: устройство, принцип действия, техническая характеристика, достоинства и недостатки. Другие виды бесштанговых насосов (гидропоршневые, диафрагменные, струйные), их устройство, техническая характеристика, область применения.

Техническая безопасность при эксплуатации скважин бесштанговыми насосами.

Практическое занятие №6

Литература:1, с.3-8; 2,с.2-6; 3 с. 3-10; 4 с. 159-202,229.

 

Тема 7. Раздельная добыча нефти и газа из двух и более пластов одной скважиной.   Студент должен: знать: целесообразность применения одновременно-раздельной эксплуатации одной скважиной нескольких горизонтов, оборудование для раздельной эксплуатации по схемам: фонтан-фонтан, насос-насос; уметь: производить расчет и подбор оборудования для эксплуатации скважин УЭЦН Сущность одновременно-раздельной эксплуатации нескольких пластов одной скважиной. Выбор объектов для раздельной эксплуатации. Требования к оборудованию для одновременно раздельной эксплуатации двух пластов по различным схемам. Раздельная эксплуатация двух пластов по схемам: фонтан-фонтан, насос-насос и др. Раздельная эксплуатация двух газовых пластов.

Особенности мероприятий по технике безопасности при одновременно-раздельной эксплуатации нескольких пластов одной скважиной.

Литература:1, с.3-8; 2,с.2-6; 3 с. 3-10

 

studopedya.ru


Смотрите также