Основы химии нефти и газа [учебное пособие]. Основы химии нефти и газа. Химические свойства нефти реакции


Состав нефти и химические свойства.

ТОП 10:

Нефть – это горная порода. Она относится к группе осадочных пород вместе с песками, глинами, известняками, каменной солью и др. Мы привыкли считать, что порода – это твердое вещество, из которого состоит земная кора и более глубокие недра Земли. Оказывается, есть и жидкие породы, и даже газообразные. Одно из важных свойств нефти – способность гореть.

В зависимости от месторождения нефть имеет различный качественный и количественный состав. Нефти состоят главным образом из углерода – 79,5-87,5% и водорода – 11,0-14,5% от массы нефти. Кроме них в нефтях присутствуют еще три элемента – сера, кислород и азот. Их общее количество обычно составляет 0,5-8%. В незначительных концентрациях в нефтях встречаются элементы: ванадий, никель, железо, алюминий, медь, магний, барий, стронций, марганец, хром, кобальт, молибден, бор, мышьяк, калий. Их общее содержание не превышает 0,02-0,03% от массы нефти. Указанные элементы образуют органические и неорганические соединения, из которых состоят нефти. Кислород и азот находятся в нефтях только в связанном состоянии. Сера может встречаться в свободном состоянии или входить в состав сероводорода.

В состав нефти входит около 425 углеводородных соединений. Главную часть нефтей составляют три группы УВ: метановые, нафтеновые и ароматические. По углеводородному составу все нефти подразделяются на: 1) метаново-нафтеновые, 2) нафтеново-метановые, 3) ароматическо-нафтеновые, 4) нафтеново-ароматические, 5) ароматическо-метановые, 6) метаново-ароматические и 7) метаново-ароматическо-нафтеновые. Первым в этой классификации ставится название углеводорода, содержание которого в составе нефти меньше.

Метановые УВ (алкановые или алканы) химически наиболее устойчивы, они относятся к предельным УВ и имеют формулу Cnh3n+2. Если количество атомов углерода в молекуле колеблется от 1 до 4 (СН4-С4Н10), то УВ представляет собой газ, от 5 до 16 (C5h26-C16h44) то это жидкие УВ, а если оно выше 16 (С17Н36 и т.д.) – твердые (например, парафин).

Нафтеновые (циклановые или алициклические) УВ (Cnh3n) имеют кольчатое строение, поэтому их иногда называют карбоциклическими соединениями. Все связи углерода с водородом здесь также насыщены, поэтому нафтеновые нефти обладают устойчивыми свойствами.

Ароматические УВ, или арены (СnНn), наиболее бедны водородом. Молекула имеет вид кольца с ненасыщенными связями углерода. Они так и называются – ненасыщенными, или непредельными УВ. Отсюда их неустойчивость в химическом отношении.

Наряду с углеводородами в нефтях присутствуют химические соединения других классов. Обычно все эти классы объединяют в одну группу гетеросоединений (греч. “гетерос” – другой). В нефтях также обнаружено более 380 сложных гетеросоединений, в которых к углеводородным ядрам присоединены такие элементы, как сера, азот и кислород. Большинство из указанных соединений относится к классу сернистых соединений – меркаптанов. Это очень слабые кислоты с неприятным запахом. С металлами они образуют солеобразные соединения – меркаптиды. В нефтях меркаптаны представляют собой соединения, в которых к углеводородным радикалам присоединена группа SH.

 
 

Метилмеркаптан.

Меркаптаны разъедают трубы и другое металлическое оборудование буровых установок и промысловых объектов.

В нефтях так же выделяют неуглеводородные соединения: асфальто-смолистую части, порфирины, серу и зольную часть.

Асфальто-смолистая часть нефтей – это темноокрашенное вещество. Оно частично растворяется в бензине. Растворившаяся часть называется асфальтеном, нерастворившаяся – смолой. В составе смол содержится кислород до 93 % от общего его количества в нефтях.

Порфирины – особые азотистые соединения органического происхождения. Считают, что они образованы из хлорофилла растений и гемоглобина животных. При температуре 200-250оС порфирины разрушаются.

Сера широко распространена в нефтях и в углеводородном газе и содержится либо в свободном состоянии, либо в виде соединений (сероводород, меркаптаны). Количество ее колеблется от 0,1% до 5%, но бывает и значительно больше. Так, например, в газе Астраханского месторождения содержание Н2S достигает 24 %.

Зольная часть – остаток, получающийся при сжигании нефти. Это различные минеральные соединения, чаще всего железо, никель, ванадий, иногда соли натрия.

Кислород в нефтях встречается в связанном состоянии также в составе нафтеновых кислот (около 6%) – Cnh3n-1(COOH), фенолов (не более 1%) – C6H5OH, а также жирных кислот и их производных – C6H5O6(P). Содержание азота в нефтях не превышает 1%. Основная его масса содержится в смолах. Содержание смол в нефтях может достигать 60% от массы нефти, асфальтенов – 16%.

Асфальтены представляют собой черное твердое вещество. По составу они сходны со смолами, но характеризуются иными соотношениями элементов. Они отличаются большим содержанием железа, ванадия, никеля и др. Если смолы растворяются в жидких углеводородах всех групп, то асфальтены нерастворимы в метановых углеводородах, частично растворимы в нафтеновых и лучше растворяются в ароматических. В “белых” нефтях смолы содержатся в малых количествах, а асфальтены вообще отсутствуют.

Физические свойства.

Нефть – это вязкая маслянистая жидкость, темно-коричневого или почти черного цвета с характерным запахом, обладающая слабой флюоресценцией, более легкая (плотность 0,73-0,97г/см3), чем вода, почти нерастворимая в ней. Нефть сильно варьирует по плотности (от легкой 0,65-0,70 г/см3, до тяжелой 0,98-1,05 г/см3). Нефть и ее производные обладают наивысшей среди всех видов топлив теплотой сгорания. Теплоемкость нефти 1,7-2,1 кДж/кг, теплота сгорания нефти – 41 МДж/кг, бензина – 42 МДж/кг. Температура кипения зависит от строения входящих в состав нефти углеводородов и колеблется от 50 до 550°С.

Различные компоненты нефти переходят в газообразное состояние при различной температуре. Легкие нефти кипят при 50–100°С, тяжелые – при температуре более 100°С.

Различие температур кипения углеводородов используется для разделения нефти на температурные фракции. При нагревании нефти до 180-200°С выкипают углеводороды бензиновой фракции, при 200-250°С – лигроиновой, при 250-315°С – керосиново-газойлевой и при 315-350°С – масляной. Остаток представлен гудроном. В состав бензиновой и лигроиновой фракций входят углеводороды, содержащие 6-10 атомов углерода. Керосиновая фракция состоит из углеводородов с C11-C13, газойлевая – C14-C17.

Важным является свойство нефтей растворять углеводородные газы. В 1 м3 нефти может раствориться до 400 м3 горючих газов. Большое значение имеет выяснение условий растворения нефти и природных газов в воде. Нефтяные углеводороды растворяются в воде крайне незначительно. Нефти различаются по плотности. Плотность нефти, измеренной при 20°С, отнесенной к плотности воды, измеренной при 4°С, называется относительной. Нефти с относительной плотностью 0,85 называются легкими, с относительной плотностью от 0,85 до 0,90 – средними, а с относительной плотностью свыше 0,90 – тяжелыми. В тяжелых нефтях содержатся в основном циклические углеводороды. Цвет нефти зависит от ее плотности: светлые нефти обладают меньшей плотностью, чем темные. А чем больше в нефти смол и асфальтенов, тем выше ее плотность. При добыче нефти важно знать ее вязкость. Различают динамическую и кинематическую вязкость. Динамической вязкостью называется внутреннее сопротивление отдельных частиц жидкости движению общего потока. У легких нефтей вязкость меньше, чем у тяжелых. При добыче и дальнейшей транспортировке тяжелые нефти подогревают. Кинематической вязкостью называется отношение динамической вязкости к плотности среды. Большое значение имеет знание поверхностного натяжения нефти. При соприкосновении нефти и воды между ними возникает поверхность типа упругой мембраны. Капиллярные явления используются при добыче нефти. Силы взаимодействия воды с горной породой больше, чем у нефти. Поэтому вода способна вытеснить нефть из мелких трещин в более крупные. Для увеличения нефтеотдачи пластов используются специальные поверхностно-активные вещества (ПАВ). Нефти имеют неодинаковые оптические свойства. Под действием ультрафиолетовых лучей нефть способна светиться. При этом легкие нефти светятся голубым светом, тяжелые – бурым и желто-бурым. Это используется при поиске нефти. Нефть является диэлектриком и имеет высокое удельное сопротивление. На этом основаны электрометрические методы установления в разрезе, вскрытом буровой скважиной, нефтеносных пластов.

 



infopedia.su

Физико-химические свойства нефти, её состав и качественная характеристика.

ТОП 10:

Физико-химические свойства нефти, её состав и качественная характеристика.

Нефть это сложное соединение углерода и водорода.(УВ) существует множество УВ которые отличаются др от др числом атомов углерода и водорода в молекуле и хар-ром их скопления. Физические свойства пластовых нефтей отличаются от св-в поверхностных нефтей и зависят от температуры, давления и растворимости в них газа. В нефтях кроме углерода и водорода в небольших количествах содержаться кислород, азот, сера, в виде следов хлор, фосфор, йод и другие химические элементы. В состав нефти также входят многие металлы. В тяжелых вязких нефтях концентрируется ванадий и никель в промышленных количествах, нередко дорогостоящий ванадий добывается из высоковязких нефтей. В пластовых условиях плотность зависит от кол-ва растворенного газа, температуры и давления. При растворении газа в нефти ее объём увеличивается. В нефтях встречаются следующие группы УВ: 1)метановые(парафиновые) 2) нафтеновые 3) ароматические. Но в основном нефти бывают смешанного типа с преобладанием той или иной группы УВ и в зависимости называются парафиновыми, ароматическими и нафтеновыми. УВ от метана(СН4) до бутана(С4Н10) при атмосферном давлении находятся в газообразном состоянии, из них состоит нефтяной газ. УВ соединения содержащие от 5 до 17 атомов углерода находятся в жидком состоянии, они и входят в состав нефти. Физические и качественная хар-ка нефтяных соединений зависит от преобладания в них отдельных УВ групп. Нефти с преобладанием сложных УВ (тяжелые нефти) содержат меньшее количество бензиновых и масляных фракций. Содержание в нефти значительного кол-ва смолопарафинных соединений делает ее малоподвижной и требует особых подходов при ее добыче и транспорте. Одним из физических св-в нефти является ее вязкость (св-во жидкости сопротивляться ее взаимному перемещению ее частиц при движении. вязкость нефти в зависимости от ее характеристик и температуры может изменятся. С увеличением количества растворенного в нефти газа и температуры вязкость нефти уменьшается. С увеличением смолопарафиновых соединений вязкость нефти увеличивается.

Пластовый нефтяной газ, его состав и физические свойства. Понятие о газовом факторе и давлении насыщения.

Газы нефтяных и газовых месторождений по своей химической природе сходны с нефтью. Газы нефтяных месторождений добываемые вместе с нефтью называют нефтяными газами а газы газовых месторождений называются природным газом. Они состоят из: метана, пропан, пентан, бутан. Часто УВ газы в своем составе содержат сероводород, гелий, аргон, пары ртути. Больше всего содержится сероводорода, азота, углекислого газа. Если при постоянной температуре постоянно повышать давление газа, то он переходит в жидкое состояние. Температура при которой вещество с повышением давления до определенной величины из газообразной фазы переходит в жидкую, называется точкой росы или точкой начала конденсации. В зависимости от преимущественного содержания в нефтяных газах легких или тяжелых УВ, газы подразделяются на сухие и жирные. Сухой газ – естественный газ, в котором не содержаться тяжелые УВ или содержаться в небольших количествах. Жирный газ – газ в котором тяжелые углеводороды содержаться в больших количествах. Жирные газы чаще содержаться в легких нефтях, а сухие газы в тяжелых нефтях. Одним из основных физических параметров нефтяного газа является его плотность. (отношение массы вещества к занимаемому объёму). На практике пользуются относительной плотностью газа, которая показывает во сколько раз плотность данного газа, заключенного в данном объёме при данных давлениях и температуре, больше или меньше массы сухого воздуха, заключенного в том же объёме и при тех же условиях. Вязкость газа – свойство газа сопротивляться перемещению одних частиц относительно других. При низких давлениях с повышением температуры вязкость газа возрастает в связи с тем, что скорости движения молекул увеличиваются.При значительном повышении давления вследствие уплотнения газа вязкость его с повышением температуры уменьшается. При повышении давления вязкость снижается с увеличением температуры. Растворимость газов в нефти: с увеличением температуры растворимость газовой смеси уменьшается. Давление при котором из нефти начинает выделяться газ называется давлением насыщения пластовой нефти.давление насыщения зависит от состава нефти и газа, от соотношений их объёмов и температуры. Если в пласте имеется газовая шапка, то в этом случае давление насыщения равно пластовому давления или близко к нему. Количество газа в 1м3 приходящееся на 1 т добычи нефти, называется газовым фактором.

Физико-химические свойства пластовых вод.

В поровом пространстве нефтяных залежей вместе с нефтью и газом обычно находится вода. Часть воды в процессе эксплуатации скважин остаётся неподвижной. Такую воду называют «связанной» ( с породой), «остаточной». Эта вода может заполнить до 20% объёма пор и более. Остальная вода может выносится к забою скважин и подниматься на поверхность вместе с Н и Г. На практике такую воду называют «пластовой». Пластовые воды по степени полезности делятся на солёные, слабосолёные и пресные. Из газообразных в-тв в пластовые воды входят УВ газы и иногда значительные кол-ва сероводорода. Минеральные в-ва Na, K, Mg, Fe, I, Br….определяют их общую минерализацию. Относительно нефтегазоносных горизонтов пластовые воды делятся на виды: 1. контурные – воды в пониженных участках нефтяных пластов. 2. верхние контурные – в случае, если нефтеносная часть пласта выведена на поверхность и заполнена поверхностными водами. 3. подошвенные – воды, в нижней части приконтурной зоны пласта. 4. промежуточные – воды залегающие в пропластке нефтяных или газовых пластов. 5. верхние – воды, залегающие выше данного пласта. 6. нижние – воды, залегающие ниже данного пласта. 7. смешанные – воды, залегающие выше данного пласта и поступающие из нескольких водоносных пластов. К особым видам можно отнести тектонические воды: 1. тектонические – могут поступать по тектоническим трещинам из пластов более высоких напоров. 2. Шельфовые - подземные воды шельфовых частей материков, т. е. прибрежных частей дна мирового октана. 3. технические – вода попадает в нефтегазовые пласты при бурении скважин и ремонтных работах при эксплуатации скважин. Основные физические показатели пластовых вод: плотность, солёность, минерализация, вязкость, температура, электропроводность, сжимаемость, радиоактивность, растворимость воды в нефти и газов в воде. Толщина тонких слоёв связанной воды в горных породах в значительной мере зависит от проницаемости коллектора и минерализации воды. С увеличением глинистости толщина стенок увеличивается, с увеличением минерализации толщина уменьшается. Если в пласте содержится большое кол-во связанной воды, то в пласта уменьшается фазовая проницаемость для нефти и скважин, работают со сниженными дебитами. При неправильном подборе источника водоснабжения при заводнении в процессе взаимодействия закачиваемой воды со связанной водой могут образовываться остатки минеральных солей, который частично или полностью закупорят порово-трещинновое пространство пласта. Также с учётом пластовой воды приготавливается глинистый раствор для вскрытия продуктивного пласта в процессе бурения скважины.

Основные понятия о природных коллекторах нефти и газа. Физико-химические свойства коллекторов: пористость, проницаемость, удельная поверхность.

Горные породы способные вмещать нефть, газ, воду и отдавать их при разработке, называются коллекторами. Нефть и газ содержаться в таких коллекторах, как пески, песчаники, алевроиты, и в карбонатных коллекторах-известняки, мел. Породы-коллектора должны обладать емкостью – системой пор (пустот), трещин. Но не все породы обладающие емкостью, являются проницаемыми для нефти и газа. Проницаемость горных пород зависит от поперечных размеров пустот в породе. Разделяют коллекторы на 3 типа: 1)гранулярные, или паровые(только обломочные горные породы 2)трещинные 3) каверновые (карбонатные породы). Емкость порового коллектора называется пористостью.( для характеристики пористости применяется коэффициент пористости, который показывает какую част от всего объёма горной породы занимают поры. Пористость бывает общая (объем всех пор в породе). Коэф общ пористости представляется отношением объёма всех пор к объёму образца породы), открытая (характеризуется коэф открытой пористости: отношение суммарного объёма открытых пор к объёму образца породы), эффективная(определ наличием пор в породе из которых нефть и газ могут быть извлечены при разработке. Коэф эффективн пористости равен отношению объёма пор (через которые возможно движ-е нефти, газа и воды при опред температуреи давлении) к объёму образца породы. Способность пород пропускать при перепаде давления жидкость и газ называется проницаемостью. Пористость и проницаемость нефтегазоносных пластов часто значительно изменяется в одном и том же пласте. Величины пористости и проницаемости значительно влияют на конечное нефтеизвлечение. В процессе разработки с целью увеличения пористости и проницаемости проводят разл геолого технич мероприятия.(гидроразрыв пласта, щелевая разгрузка,обработка пласта оксидатом). Удельная поверхность горной породы – величина суммарной поверхности частиц приходящихся на единицу объёма образца. От величины удельной поверхн зависит ее проницаемость.

 

Комбинированный.

Движение жидкости по пласту к забою скважины происходит за счет пластовой энергии. Запас пластовой энергии, величина начального пластового давления и темп его снижения зависят от природных факторов (энергии расширения газа в газовой шапке, энергии расширения растворенного в нефти газа, гравитационного фактора, который может способствовать нефтеизвлечению, особенно в залежах с большими углами падения. ) и искусственных факторов. Совокупность всех естественных и искусственных факторов определяющих процессы, проявляющиеся в пористом пласте, при его разработке, называются режимом пласта. В зависимости от того какой вид энергии является основной движущей силой перемещения нефти от залежи к забою скважин, выделяют следующие режимы: водонапорный (естественный и искусственный), упругий, газонапорный (режим газовой шапки) а так же режим растворенного газа и гравитационный (режим истощения пластовой энергии).от правильной оценки режима дренирования скважины зависят технологические показатели разработки нефтяного месторождения,которые в конечном итоге будут влиять на рациональную разработку месторождения и получения высокого коэффициента конечного нефтеизвлечения. Водонапорный режим подразделяется на жестководонапорный режим и упруговодонапорный режим. Жестководонапорный режим: 1) движение нефти в пласте к забоям скважин происходит под действием давления краевых или контурных вод, имеющие постоянное пополнение из наружных источников. 2)среднее пластовое давление > давления насыщения. 3)свободного газа в пласте нет и через горную породу фильтруется только нефть или нефть с водой. 4)устанавливаются стабильные дебиты жидкости, давление и газовый фактор. 5)разработка заканчивается, когда контурная вода доходит до нефтяных скважин и из пласта извлекается в основном вода. 6)количество извлеченной жидкости должно быть равно количеству поступившей в залежь жидкости. Упруговодонапорый режим: 1)движущей силой является упругое расширение горной породы и жидкостей, находящейся в ней. 2)в начальном периоде разработки залежи идет значительное снижение пластового давления и соответственно дебитов нефти по скважинам. 3)контур нефтеносности постоянно перемещается и сокращается. Газонапорный режим: 1)основная движущая сила - энергия сжатого газа, находящегося в газовой шапке 2)процесс вытеснения нефти газом схожи с процессов вытеснения водой 3)газ вытесняет нефть в пониженные части залежи 3)Процесс вытеснения нефти расширяющимся газом сопровождается гравитационными эффектами 4)Нефть стекает под действием силы тяжести в наиболее низкие места залежи, а выделяющийся из нефти растворенный в ней газ поднимается и пополняет газовую шапку, за счет чего замедляется темп падения пластового давления 5)С целью увеличения нефтеизвлечения и недопущения перехода газонапорного режима в режим растворенногогаза, закачивают газ.(Режим растворенного газа: основной движущей силой является газ, растворенный в нефти. По мере разработки нефтяной залежи, давление в ней падает, и начинается выделение газа из нефти. Отдельные его пузырьки расширяются в объёме и выталкивают нефть из порового пространства в участки с пониженным давлением, т.е к забоям нефтяных скважин, но колич-во газа растворенного в нефти, небольшое). Гравитационный режим проявляется тогда, когда в нефтяном пласте давление снижено до атмосферного, а имеющаяся в нем нефть уже не содержит растворенного газа. Все породы, содержащие нефть и газ залегают под некоторым углом к горизонтальной площади, поэтому находящаяся в них нефть под действием силы тяжести стремиться переместиться вниз по направлению пластов. При крутых углах падения наибольшие дебиты дают скважины, пробуренные в пониженных участках пласта. При этом режиме добыча нефти ведется механизированным способом.

Внутрипластовое горение.

Термический метод добычи нефти с применением внутрипластового горения применяется для увеличение нефтеизвлечения на месторождениях с вязкой и высоковязкой нефтью. Первые работы были проведены на Ширванском месторождении в Краснодарском крае в 1934 г. Внутрипластовое горение – физико-химический окислительный процесс в котором происходят химические превращения веществ с выделением больших количеств теплоты и образованием продуктов реакций. Процесс внутрипластового горения – способ разработки месторождения вязкой нефти с целью увеличения конечного нефтеизвлечения, который основывается на использовании энергии получаемой при частичном сжигании тяжелых фракций нефти (кокса) в пластовых условиях при нагнетании в пласт окислителя (воздуха). Процесс внутрипластового горения обладает всеми преимуществами термических методов вытеснения нефти горячей водой и паром. Основа горения – экзотермическая окислительно-восстановительная реакция вещества с окислителем. При внутрипластовом горении тепло для воздействия на нефтяной пласт образуется за счет сжигания части пластовой нефти. По исследованиям сжигается до 15% нефти от геологических запасов в пласте. Обычно сгорают более тяжелые и менее ценные компоненты нефти. Основные закономерности проведения процесса внутрипластового горения: 1) ВГ может осущ в виде сухого ВГ (СВГ), воздушного ВГ (ВВГ) и сверх влажного ВГ (СВВГ) 2) главным параметром для ВВГ и СВВГ является водо-воздушный фактор (ВВФ) – отношение объёма закачиваемой в пласт воды к объёму закач в пласт воздуха. 3) реакции происходят в узкой зоне продуктивного пласта, которая называется фронтом горения. 4) при сухом и влажном процессах на фронтах горения температура в среднем 300-500, а при СВВГ при температуре 200-300 градусов. 5)увеличение воздушного фактора дает возможность повышать скорость продвижения по пласту тепловой волны 6)на процесс ВГ значительное влияние оказывает пластовое давление, тип породы и нефти, начальная нефтенасыщенность.

 

 

Физико-химические свойства нефти, её состав и качественная характеристика.

Нефть это сложное соединение углерода и водорода.(УВ) существует множество УВ которые отличаются др от др числом атомов углерода и водорода в молекуле и хар-ром их скопления. Физические свойства пластовых нефтей отличаются от св-в поверхностных нефтей и зависят от температуры, давления и растворимости в них газа. В нефтях кроме углерода и водорода в небольших количествах содержаться кислород, азот, сера, в виде следов хлор, фосфор, йод и другие химические элементы. В состав нефти также входят многие металлы. В тяжелых вязких нефтях концентрируется ванадий и никель в промышленных количествах, нередко дорогостоящий ванадий добывается из высоковязких нефтей. В пластовых условиях плотность зависит от кол-ва растворенного газа, температуры и давления. При растворении газа в нефти ее объём увеличивается. В нефтях встречаются следующие группы УВ: 1)метановые(парафиновые) 2) нафтеновые 3) ароматические. Но в основном нефти бывают смешанного типа с преобладанием той или иной группы УВ и в зависимости называются парафиновыми, ароматическими и нафтеновыми. УВ от метана(СН4) до бутана(С4Н10) при атмосферном давлении находятся в газообразном состоянии, из них состоит нефтяной газ. УВ соединения содержащие от 5 до 17 атомов углерода находятся в жидком состоянии, они и входят в состав нефти. Физические и качественная хар-ка нефтяных соединений зависит от преобладания в них отдельных УВ групп. Нефти с преобладанием сложных УВ (тяжелые нефти) содержат меньшее количество бензиновых и масляных фракций. Содержание в нефти значительного кол-ва смолопарафинных соединений делает ее малоподвижной и требует особых подходов при ее добыче и транспорте. Одним из физических св-в нефти является ее вязкость (св-во жидкости сопротивляться ее взаимному перемещению ее частиц при движении. вязкость нефти в зависимости от ее характеристик и температуры может изменятся. С увеличением количества растворенного в нефти газа и температуры вязкость нефти уменьшается. С увеличением смолопарафиновых соединений вязкость нефти увеличивается.



infopedia.su

Химические реакции углеводородов нефти - Справочник химика 21

    ХИМИЧЕСКИЕ РЕАКЦИИ УГЛЕВОДОРОДОВ НЕФТИ [c.89]

    Сходство химического состава сырых нефтей может привести к гипотезе, что углеводороды сырой нефти, достигшие равновесия в определенных условиях температуры и давления их образования, более или менее одинаковы для всех сырых нефтей. Вообще говоря, эта гипотеза несовместима с термодинамическими свойствами углеводородов. Известно, что все углеводороды сырых нефтей термически нестабильны и могут быть превращены в такие стабильные системы, как, например, метан или этан и углерод. Такие реакции, однако, характеризуются высокими значениями энергии активации и поэтому невозможны при тех низкотемпературных условиях, которые соответствуют образованию и залеганию сырой нефти. Реакции изомеризации протекают значительно легче, в частности в присутствии некоторых гетерогенных катализаторов, таких, как алюмосиликатные системы, обычно имеющиеся в нефтяных пластах. Следовательно, равновесие между изомерами таких углеводородов более вероятно, чем равновесие, рассмотренное выше. [c.23]

    В химии нефти с тепловым свойствами чаще всего приходится встречаться при определении констант равновесия тех или иных химических реакций углеводородов, для чего необходимо знание теплового эффекта реакции. Непосредственное определение теплоты реакции обычно чрезвычайно трудно и сложно и чаще эту величину находят расчетом, пользуясь законом Гесса. [c.84]

    Нитрование алканов как один из методов химического использования углеводородов нефти издавна привлекало к себе внимание исследователей. Получаемые при этом нитросоединения представляют собой ценные для промышленности органического синтеза полупродукты, а также имеют и непосредственное применение в качестве растворителей, добавок к дизельным топливам и пр. Следует отметить, что в процессе нитрования одновременно с нитроалканами образуются еще и такие кислородсодержащие продукты, как альдегиды, кетоны, спирты в небольших количествах, окислы углерода. Из них соединения первых двух указанных классов так же представляют значительный практический интерес. Таким образом, реакция нитрования алканов должна рассматриваться как потенциальный источник ценных продуктов, как химически процесс, который после нахождения путей управления им сможет получить практическое значение. [c.286]

    Термические процессы. Переработка нефтяного сырья под действием высоких температур значительно расширила возможности использования нефти как химического сырья. При изучении термических реакций углеводородов нефти прежде всего возникает вопрос о влиянии условий процесса на направление реакции и на степень превращения исходного сырья при достижении равновесия. Главными факторами, влияющими на скорость и глубину превращения углеводородов сырья, являются температура, давление, длительность нахождения в зоне реакции. [c.234]

    Большинство химических превращений углеводородов нефти, имеющих практическое значение, осуществляется в присутствии катализаторов. Катализаторы позволяют снижать энергию активации химических реакций и тем самым значительно повышать их скорость. В самом общем виде в этом и заключается сущность и значение катализа. Проведение реакции в присутствии катализаторов позволяет также резко снижать температуру процесса. Для реакций, характеризующихся положительным тепловым эффектом (полимеризация, гидрирование, алкилирование и др.), это имеет особо важное значение, так как высокие температуры с термодинамической точки зрения для них неблагоприятны. [c.197]

    Давление не влияет на скорость мономолекулярных реакций, поскольку каждая молекула в них реагирует самостоятельно. Для бимолекулярных реакций повышение давления увеличивает возможность столкновения реагирующих молекул и поэтому увеличивает скорость реакции. Большинство реакций углеводородов нефти характеризуется небольшими скоростями. Поэтому достижение равновесных концентраций конечных продуктов в ряде случаев затруднено. Для увеличения скорости реакции приходится повышать температуру и применять катализаторы (см. 31).Скорость любой химической реакции увеличивается с повышением температуры, причем для большинства реакций при повышении температуры на 10° она увеличивается в 2—4 раза. Относительное увеличение константы скорости реакции при повышении температуры на 10° называется температурным коэффициентом скорости реакции (у) [c.159]

    Производства органических веществ из углеводородов нефти и газа (нефтехимическая и химическая промышленность) и производства топлив, масел, углеводородного сырья химических процессов (нефтеперерабатывающая промышленность) относятся к водоемким. Большую часть воды расходуют для охлаждения и конденсации продуктовых потоков. В значительной части технологических процессов воду используют как растворитель или вводят в виде пара. Воду применяют и как реагент химических реакций. [c.80]

    Образование нефти непосредственно из СО2 и Н2О, из которых состояла материнская атмосфера Земли, термодинамически без фотосинтеза невозможно ( термодинамический аргумент). Теоретически более вероятна возможность образования нефти в земных глубинах взаимодействием воды с карбидами металлов. Единственное, но не убедительное доказательство этому, являющееся козырной картой сторонников неорганической концепции, - это нефтеподобная жидкость, получаемая в лабораторных условиях по карбидному синтезу, но принципиально отличающаяся по качеству от природной нефти (как, например, сливочное масло от маргарина). Кроме того, на наш взгляд, карбиды металлов могли образоваться в природе в результате взаимодействия карбидообразующих металлов с органическими веществами при термобарических условиях подземелья. В таком случае карбидный синтез углеводородов есть не что иное, как промежуточная каталитическая стадия (вторичная реакция) суммарного биогенного процесса рождения нефти. Ведь из теории катализа известно, что металлы (и не только металлы) - катализаторы ускоряют химические реакции, образуя с участниками химического процесса промежуточные химические соединения, но при этом не изменяя равновесия реакций (физико-химический аргумент). [c.64]

    Как известно, перед обычными процессами нефтепереработки не ставится задача разделить нефть на отдельные химически чистые углеводороды. Нефтяные топлива и масляные фракции представляют собой простые или сложные смеси углеводородов, причем последние встречаются много чаще простых. Химические свойства таких смесей необычайно сложны и зачастую сильно отличаются от свойств их основных компонентов, поэтому нам представляется чрезвычайно важным изучить и классифицировать Химические реакции и свойства нефтепродуктов. [c.68]

    Б. А. Казанский и Т. Ф. Буланова [22] исследовали поведение смеси циклогексана и циклопентана в условиях дегидрогенизационного катализа над платинированным углем прн 300 -310°. Оказалось, что в начале реакции имеет место гидрогенолиз циклопентана (за счет водорода, отщепляющегося от циклогексана), но катализатор быстро теряет активность по отношению к гидрогенолизу циклопентана, сохраняя прежнюю активность по отношению к дегидрогенизации циклогексана. Таким образом платиновый катализатор, находящийся в соприкосновении с углеводородной смесью, содержащей циклопентан, настолько теряет активность по отношению к гидрогенолизу циклопентановых углеводородов, что даже циклопентан, размыкающийся легче всех остальных пятичленных цикланов, остается в дальнейшем нетронутым. Так как платиновый катализатор, применяемый нами для исследования химического состава норийской нефти, находился в работе длительное время, то нужно полагать, что в условиях наших опытов гидрогенолиз циклопентановых и дегидроциклизация парафиновых углеводородов были сведены к минимуму. [c.165]

    В первой части книги из главы III Физические свойства нефти исключен текст о приборах и методах определения физических свойств нефти, так как этот материал частично устарел и более полно описывается в специальных учебниках. Материал о физических (глава III) и химических (глава IV) свойствах нефти дополнен Г. Д. Гальперном. Исключена глава IV Краткие сведения из органической химии в связи с тем, что эти сведения устарели и более полно и современно освещаются в учебниках и справочниках по органической химии. В главе V сокращены разделы, посвященные характеристике непредельных углеводородов, реакции углеводородов, получаемых в процессе переработки нефти, сведения о выработке нефтепродуктов и очистки нефти. По этим же мотивам исключены глава VI Характеристика важнейших нефтей в СССР и за границей и глава VII Методы переработки нефти . [c.2]

    Предыдущее наше знакомство с отдельными группами углеводородов, входящих в состав нефти, показало, что химическая активность углеводородов всецело зависит от степени насыщения углеродных атомов в той или иной группе углеводородов. Наибольшей реакционной способностью обладают ненасыщенные углеводороды, несколько менее — ароматические, затем — нафтены и, наконец, наименьшей способностью к химическим реакциям обладают, углеводороды парафинового ряда (под химическими реакциями в данном случае подразумеваются реакции присоединений, восстановления, полимеризации, окисления и т. д.). [c.89]

    Реакции окисления являются интересными и перспективными методами химической переработки парафиновых углеводородов нефти. Вопросам окисления парафиновых углеводородов посвящено много работ. [c.26]

    Изучение химических (а вернее геохимических) условий образования нефтей в природе, кроме чисто познавательного интереса, имеет и очевидный практический интерес, так как позволяет сознательно подходить к проблеме разведки нефтяных месторождений. Не меньшее значение имеет понимание механизма образования нефтей и для химиков, так как-геохимические условия образования нефтей определяют закономерности ее химического состава, что в значительной мере помогает разобраться в сложных задачах, связанных с исследованием строения нефтяных углеводородов. Под геохимическими условиями образования нефти следует подразумевать сложный комплекс вопросов, связанных как со строением и составом нефтематеринских веш,еств, так и с условиями преобразования последних в нефть. Как будет показано в дальнейшем, наиболее важным звеном является в данном случае определение химических реакций, лежаш,их в основе нефтеобразования. [c.370]

    Начиная с 80-х годов, исследования состава нефтей стали широко производиться как в России, так и в США. В России в этих исследованиях участвовали выдающиеся ученые того времени — Д. И. Менделеев, В. В. Марковников, М. И. Коновалов и другие. Д. И. Менделеев в 1883 г. установил присутствие пентана в легкой фракции бакинской нефти и его идентичность с пентаном американской нефти. В. В. Марковников и В. Оглоблин установили присутствие в бакинских нефтях нового класса углеводородов, названных ими нафтенами. Дальнейшие исследования показали, что в составе нефтей присутствует много различных углеводородов, и содержание углеводородов разных классов неодинаково в разных нефтях. Оказалось, что в бакинской нефти много нафтенов, а пенсильванская нефть США более богата метановыми углеводородами. Все эти исследования состава нефтей проводились с помощью перегонки, химических реакций и определения плотности. [c.218]

    Сырая нефть, полученная из скважин, обычно подвергается прежде всего такой переработке, при которой ее компоненты, т. е. углеводороды и другие соединения, химически не изменяются. Нефть очищается и из нее выделяются отдельные фракции — бензина, керосина и других. Это направление называется первичной переработкой нефти. Отдельные фракции нефти после ее очистки могут быть подвергнуты более глубокой переработке, при которой в результате химических реакций изменяется состав фракций и получаются новые нефтепродукты. Это вторичная переработка нефти, основанная на разложении и превращении ее компонентов под действием повышенной или высокой температуры. Сюда относятся различные виды крекинга и пиролиза нефти. В этом разделе мы рассмотрим первичную переработку нефти. [c.247]

    В гл. 2 указывалось, что олефины не встречаются в природе (в сырой нефти). Они образуются при крекинге нефти — одного из основных процессов нефтеперерабатывающей промышленности, проводимого с целью получения бензина. Кроме того, олефины являются главными продуктами крекинга или пиролиза фракции нефтяных углеводородов. В основе крекинга и пиролиза лежит один и тот же тип химической реакции, однако эти термины связывают обычно с различными температурными режимами крекингом называют термическое разложение углеводородов, происходящее при 350—650°, а пиролизом — термическое разложение, протекающее при температурах выше 650°. [c.103]

    Рассматриваются физико-химические свойства нефти, методы ее исс, дования и разделения, а также свойства и реакции основных классов сое нений, входящих в состав нефти и газа. Освещены вопросы происхожден нефти, химии термокаталитических превращений, процессов окисления, ги рогенолиза и других реакций углеводородов нефти и газа. Приводятся данн о составе и эксплуатационных свойствах основных видов топлив и масхимико-технологических вузе Пол рно также инженерно-техническим и научным работникам, занятым нефтеперерабатывающей и нефтехимической промышленности. [c.3]

    Кроме карбидной теории, было разработано еще несколько гипотез неорганического происхождения нефти космическая, вулканическая, магматическая. Эти гипотезы в настоящее время не кажутся достаточно обоснованными, и мы не будем останавливаться на их изложении. Однако повторяем, что и сейчас ряд ученых рассматривает появление нефти как результат происходящих в недрах земли химических реакций, считая, что нефтяные углеводороды сложного состава образуются в природе и в отсутствие органического вещества. [c.11]

    Научно обоснованную концепцию неорганического происхождения нефти выдвинул Д.И.Менделеев (1834-1907). Он считал, что расплавленное ядро Земли состоит из карбидов металлов, преимущественно железа. По трещинам в литосфере вода проникает в глубь Земли. В результате химической реакции между карбидом железа и воды образуются оксиды железа и углеводорода, которые поднимаются по трещинам в верхние части земной коры и скапливаются [c.13]

    В процессе получения на промышленных установках компоненты нефти подвергаются действию температуры в различных каталитических системах. Вероятность химических реакций основана на величине изменения свободной энергии Гиббса. Для всех углеводородов нефти с повышением температуры энергия Гиббса возрастает. Чем большим запасом свободной энергии обладает молекула, тем менее она стабильна, т. е. термодинамическая стабильность всех углеводородов с повышением температуры падает. [c.203]

    Большинство химических превращений углеводородов нефти, имеющих практическое значение, осуществляется в присутствии катализаторов. Катализаторы позволяют снижать энергию активации химических реакций и тем самым значительно повышать их скорость. В самом общем виде в этом и заключается сущность н значение катализа. Проведение реакции в присутствии катализаторов позволяет также резко снижать температуру процесса. Для реакций, ха рактеризующихся положительным тепловым эффектом (полимеризация, гидрирование, алкилирование и др.), это имеет особо важное значение, так как высокие температуры с термодинамической точки зрения для них неблагоприятны. Следовательно, катализаторы в данном случае и ускоряют процесс, и способствуют достижению наиболее высоких равновесных концентраций. Следует, однако, не забывать, что сдвигать положение равновесия катализаторы не могут, они в равной степени ускоряют как прямые, так и обратные реакции. [c.214]

    Проблемы повышения качества и увеличения производства автомобильного бензина были решены с появлением термического крекинга. Бензин этого процесса имеет лучшие характеристики сгорания по сравнению с бензином, полученным перегонкой. При термическом крекинге более тяжелые фракции нефти, проходя через нагревательные змеевики и реакционные камеры при температуре около 500° С и давлении 34 ат, расщепляются, превращаясь в более легкие продукты с пределами выкипания бензина. Кроме бензина, продуктами реакции являются газ и высококинящий остаток. В течение некоторого времени существовало много трудностей нри оценке топлив, так как имеющиеся различия часто сводили к различиям в физических свойствах. Однако в конечном итоге было найдено, что улучшение качества бензина при термическом крекинге является результатом изменения химического состава углеводородов нефти, главным образом вследствие образования олефинов при крекинге парафинов и ароматических углеводородов при дегидрировании нафтенов. Становилось ясно, что насыщенные углеводороды с разветвленной цепью улучшают характеристику бензина. Для количественной оценки характеристику бензина сравнивают с характеристикой эталонного топлива в стандартном двигателе. В свон> очередь, эталонное топливо градуируют по смеси чистых -гептана и изооктана. На шкале октановых чисел эти два углеводорода отвечают KpaiiHHM значениям октановое число м-гептана принято за ноль, а изооктана (2,2,4-триметилпентана) — за сто. [c.12]

    Другие различия в составе нефтей, а пмонно соотношенрхя парафиновых, циклопарафиновых и ароматических углеводородов в легких фракциях, непосредственно не могут быть связаны с какой-нибудь из известных форм морских организмов нли с известными химическими соединениями, образующимися из этих организмов. Причину различия состава нефтей скорее следует искать в химических процессах образования нефти из различных сырых материалов разнообразных форм морских организмов в результате известных химических реакций в соответствии с геологической обстановкой. [c.84]

    Продолжительность этих периодов времени недостаточна, чтобы произошли заметные изменения состава насыщенных углеводородных масел, вызываемые одним нагреванием при температурах, полученных при измерениях на забое скважин, что подтверждается расчетами Сейера, а также Мак-Нэба с сотрудниками, упомянутыми выше. На это указывает и тот факт, что состав нефтей не соответствует термическому равновесию смесей при температурах, наблюдаемых в нефтяных пластах. Относительное содержание углеводородов в нефтях определяется, с одной стороны, стерическими факторами, а с другой стороны, факторами, связанными с природой промежуточного карбоний-иона (см. ниже) в реакциях образования углеводородов. Так, неопентан не образуется в алкилатах и очень редко находится в нефтях и притом только в очень малых количествах, хотя при низких температурах он является наиболее устойчивым из пентанов. Катализаторы, принимая участие во многих химических реакциях, могут также оказывать влияние на природу образующихся углеводородов, как, например, в процессе Фишера-Тропша в присутствии кобальтового катализатора получается бензин, содержащий высокий процент нормальных углеводородов и обладающий октановым числом 40, в то время как в присутствии железного катализатора при прочих равных условиях получается бензин с малым содержанием нормальных парафиновых углеводородов и обладающий октановым числом порядка 75 и выше. [c.87]

    О действии серной ] и( лоты на углеводороды нефти ...Мак-Ки (1912 г.) опубликовал интересно наблюдение, по которому при очень сильном размешивании (мешалкой, делающей 900 об/мип) парафиновые углеводороды уже нри комнатной температуре и с обыкновенной крепкой Нз304 реагиру.эт с образованием сульфокислот... По опытам Зентке в лаборатории Энглера метановые углеводороды, начиная с пентана и выше, при сильном встряхивании заметно растворяются уже в крепкой НдЗО даже без нагревания постоингкю выделение ЗОз указывает па то, что мы имеем дело не с простым растворением, а с химической реакцией. Мне представляется вероятным, что реагирование предельных углеводородов с кислотой при энергичном встряхивании обусловливается тем, что от углеводородов при этом отрываются чрезвычайно мелкие каили и 1то нри очень малых размерах капель способность ясидкости к химическому реагированию возрастает так же, как и растворимост . и испаряемость... [13]. [c.29]

    Трудность разделения гибридных структур высокомолекулярных углеводородов и отсутствие достаточно специфических реакций предельных (парафино-циклопарафиновых) углеводородов гибридного строения являются причиной слабой изученности химической природы этой группы высокомолекулярных углеводородов нефти. До сих пор почти отсутствуют данные о соотношении пента- и гексаметиленовых колец в составе предельной высокомолекулярпой углеводородной части сырых нефтей и нефтепродуктов. В бензино-керосиновых фракциях нефтей для решения этой задачи успешно была использована открытая Зелинским [74] реакция избирательной дегидрогенизации гексаметиленов в присутствии платинового катализатора. За последнее время появились сообщения об использовании этой реакции и при изучении строения таких сложных органических соединений, как политерпены, стерины, желчные кислоты, витамины, гормоны и др. [75]. Однако в литературе не встречалось указаний об использовании метода избирательной каталитической дегидрогенизации нри изучении строения предельных высокомолекулярных углеводородов нефти. Нам представлялась весьма заманчивой и перспективной возможность использования этого метода в комбинации с хроматографией и спектроскопией (инфракрасной и ультрафиолетовой) для более глубокого познания химического строения предельной части высокомолекулярных углеводородов нефти гибридного характера. Но прежде чем воспользоваться этим методом, нада было доказать его применимость для решения указанной выше задачи и проверить экспериментально надежность и воспроизводимость получаемых при этом результатов, показать пределы точности метода. [c.213]

    Трудности, с которыми сталкиваются физики, химики и тexнoJюги при анализе существа физико-химических явлений в технологических процессах, заключаются в различном характере их описания средствами названных выше областей знания. Физики интересуются фазовыми превращениями химики—условиями и механизмом протекания химических реакций в нефтяных системах технологи-нефтепереработчики заняты поиском технических решений для увеличения выхода и качества или улучшения эксплуатационных свойств нефтепродуктов технологи-промысловики ищут способы воздействия на пласт с целью повышения дебитов скважин технологи-транспортники решают технические проблемы транспортировки высоковязких нефтей инженеры-экологи предлагают технические способы защиты окружающей среды от вредного воздействия нефтяных загрязнений. Кажущаяся разорванность технологического цикла, связанного с добычей, транспортировкой, переработкой нефти и применением нефтепродуктов, а также с сопровождающими эти процессы экологическими проблемами, привела к той ситуации, что по существу одни и те же физико-химические явления изучаются различными технолога-ми-специалистами. Например, фазовый переход, связанный с выделением твердых углеводородов, представляет собой одну из проблем при добыче и транспортировке нефти этот же переход лежит в основе технологического процесса получения низкозастывающих масел — депарафииизации он же осложняет эксплуатацию дизельных топлив (табл. 1). [c.178]

    Таким образом, проведя реакцию дегидрогенизации парафино-циклопарафиновых углеводородов, зателГ применяя хроматографическое разделение, а также спектральные и химические методы исследования продуктов дегидрогенизации и используя закономерности в изменении физико-химических свойств углеводородов в зависимости от строения, можно получить достоверные экспериментальные данные об элементах структуры высокомолекулярной части парафино-циклопарафиновых углеводородов нефти. [c.228]

    Изучение состава, строения химических реакций и свойств гетероорганических соединений нефти особенно важно для решения такой принципиальной научной проблемы, как генезис нефти. Именно среди гетероорганических компонентов нефти встречаются соединения, в разной степени приближающиеся к соединениям чисто углеводородного характера, которые, вероятно, являются отдельными звеньями длинной цепи химических превращений, соединяющей нефть с органическим веществом растительного и животного происхождения, из которого эта нефть образовалась. Чем больше звеньев в этой цепи удастся расшифровать при помощи современных экспериментальных методов, тем ближе мы подойдем к раскрытию и правильному пониманию геохимической истории многообразных химических превращений в недрах земных от органического вещества растительного и животного происхождения до нефти. Наиболее простые по химическому составу кислород- и серусодержащие соединения являются, но-видимому, одной из последних (если не самой последней) ступенью в ряду этих превращений. Так, содержащиеся в нефтях карбоновые кислоты и сернистые соединения, как показали многочисленные экспериментальные исследования, имеют такую же или очень близкую структуру углеводородной части молекулы, как и углеводороды соответствующих фракций тех же нефтей. [c.303]

    В течение более 60 лет после выделения Эйхлером из нефти первых карбоновых кислот объектами большого числа исследований являлись кислоты Се—Сю, выделяемые из различных нефтей и их дистиллятов и синтезируемые в лабораториях. Это объясняется тем, что кислоты Се—Сю, содержащие в молекуле циклопентановое или циклогексановое кольцо, по температурам кипения совпадали с керосиновой фракцией (200—300° С), которая являлась основным целевым нефтепродуктом, вырабатывавшимся нефтеперерабатывающей промышленностью на протяжении почти полустолетия. Кроме того, исследователи стремились по возможности полно и всесторонне изучить химические реакции нафтеновых кислот на наиболее простых низших гомологах ряда циклопентан- и циклогексанкарбоновых киблот. Сопоставление выделенных из нефти карбоновых кислот с синтезированными индивидуальными циклопентан- и циклогексан-карбоновыми кислотами, а также превращение их в соответствующие циклопарафиновые углеводороды по схеме [c.309]

    В изучении состава нефти и химических превращений углеводородов большая роль принадлежит работам Н. Д. Зелинского, проводившимся с начала текущего столетия в Московском университете. Были изучены реакции избирательной каталитической дегидрогенизации углеводородов и установлено, что в присутствии платинового и палладиевого катализатора при температуре около 200° С происходит потеря водорода циклогексаном, который при этом полностью переходит в бензол СвН12 = СвНд -Ь ЗНз. При этих условиях гексан и циклопентан не подвергаются дегидрогенизации. [c.218]

    Работы по изученшо химического состава кавказских нефтей были продолжены М. И. Коноваловым (1858—1906 гг.) и С. С. Наметкиным (1876—1950 гг.). Заслуга М. И. Коновалова состоит в изучении им реакций предельных углеводородов, образно названных им же химическими мертвецами . М. И. Коновалов поставил себе задачу найти способ их оживления . В 1889 г. он разработал реакцию нитрования парафиновых (алкановых) углеводородов разбавленной азотной кислотой. [c.15]

    Энергетические эффекты химических процессов имеют огромное практическое значение, так как многие хи.мические реакции (например, горение углеводородов нефти или составных частей каменного угля) люди сознательно используют в качестве источника энергии для промышленности и в быту. Экзотермические процессы окисления жиров и углеводов служат источником энергии, необходимой для жизнедеятелыюстн животных и растений. [c.34]

chem21.info

Химические свойства и использование - Основы химии нефти и газа

Реакции присоединения. Арены вступают в реакции присоединения с большим трудом. Для этого требуются высокие температуры, ультрафиолетовое облучение и катализаторы. К ним относятся:

Галогенирование:

Гексахлоран используется в качестве инсектицида.

Гидрирование:

Реакции замещения наиболее характерны для аренов. Они протекают в сравнительно мягких условиях. Особенно легко вступают в реакции замещения гомологи бензола.

Галоидирование. В зависимости от условий галоидирования можно получить продукты различной степени замещения:

Сульфирование. Концентрированная серная кислота легко замещает водород на остаток серной кислоты с образованием сульфокислоты.

Эта реакция протекает количественно и может служить одним из способов определения содержания аренов в нефтяных фракциях.

Из бензолсульфокислоты и хлорбензола сплавлением их со щёлочью получают фенол.

Основная область применения фенола - производство фенолформальдегидных смол.

Нитрование. При действии на бензол смесью концентрированных азотной и серной кислот получается нитробензол:

Восстановлением нитробензола получают анилин:

Большая часть анилина используется для производства полиуретановых пенопластов.

При полном нитровании толуола получают взрывчатое вещество тротил (2,4,6-тринитротолуол):

Алкилирование. В присутствии таких катализаторов как АlCl3, HF, h3SO4, HCl, BF3 арены вступают в реакцию алкилирования с алкенами, спиртами, галоидзамещёнными алканами. Таким способом в промышленности получают этилбензол и изопропилбензол:

Каталитическим дегидрированием из этилбензола получают стирол, а из изопропилбензола - -метилстирол - ценные мономеры, используемые в производстве каучуков и пластмасс:

Алкилированием бензола хлоралканами и дальнейшим сульфированием и нейтрализацией образующихся продуктов получают алкиларилсульфонаты - синтетические поверхностно-активные вещества. Эти вещества с некоторыми добавками называют сульфонолами:

Деалкилирование и гидродеалкилирование. В связи с тем, что наибольшее значение имеет бензол, его в настоящее время получают деалкилированием или гидродеалкилированием толуола:

Конденсация с формальдегидом. В присутствии концентрированной серной кислоты арены конденсируются с формальдегидом с образованием нерастворимого осадка бурого цвета:

Эту реакцию применяют для аналитического определения аренов в нефтяных фракциях.

Окисление. Арены (кроме бензола, нафталина и других голоядерных гомологов) легко вступают в реакции окисления. В ряду алкилпроизводных аренов устойчивость к окислению падает с увеличением длины и степени разветвления боковой цепи. При этом образуются кислые соединения. Эти свойства аренов широко используются в промышленности для получения кислородсодержащих производных:

С целью получения терефталевой кислоты разработаны также различные процессы окисления толуола. Наиболее устойчивыми к окислению кислородом воздуха являются бензол и нафталин. Однако и они в очень жёстких условиях (высокая температура, катализатор) окисляются с разрывом бензольного кольца:

Терефталевая кислота - полупродукт для производства синтетического полиэфирного волокна - лавсана (терилена). Фталевый ангидрид применяется для производства алкидных и полиэфирных смол, пластификаторов, репеллентов. Малеиновый ангидрид используется в производстве полиэфирных смол и присадок к смазочным маслам.

Образование комплексов с пикриновой кислотой. Полициклические арены (нафталин, антрацен и их гомологи) легко образуют комплексные соединения с пикриновой кислотой (2,4,6 - тринитрофенол) – пикраты.

Бензол и его гомологи не образуют стабильных комплексов и могут служить растворителями при комплексообразовании.

Пикраты ароматических углеводородов представляют собой твёрдые кристаллические вещества жёлтого цвета, имеющие чёткие температуры плавления. Каждому полициклическому углеводороду соответствует пикрат с определённой температурой плавления. По температуре плавления пикрата модно идентифицировать полициклический ароматический углеводород.

Комплексообразование с пикриновой кислотой используется как метод выделения полициклических ароматических углеводородов. Пикраты легко разлагаются горячей водой. Пикриновая кислота растворяется в воде, а полициклические ароматические углеводороды выделяются в свободном виде.2.4.4. Углеводороды смешанного стороенияВысококипящие фракции нефти главным образом состоят в основном из углеводородов смешанного (гибридного) строения. Это полицикличекие углеводороды, молекулы которых содержат циклоалкановые структуры, конденсированные с аренами.

В керосино-газойлевых фракциях содержатся простейшие гибридные бициклические углеводороды и их гомологи:

Ареновые циклы гибридных углеводородов имеют преимущественно короткие (метильные или этильные) заместители, циклоалкановые кольца – один или два довольно длинных алкильных заместителя. Особенно много гибридных углеводородов в масляных фракциях. Строение их изучено мало.

Гибридные углеводороды являются нежелательными компонентами смазочных масел, поскольку они ухудшают вязкостные свойства и уменьшают стабильность их против окисления.2.4.5. Арены нефти, влияние на свойства нефтепродуктов,

применениеОбщее содержание аренов в нефтях составляет 10-20 % масс., а в ароматических нефтях их содержание доходит до 35%. Наиболее богаты аренами молодые нефти.

Общим для всех нефтей является повышение содержания аренов с температурой выкипания нефтяных фракций.

Содержание моноциклических производных ряда бензола в бензиновых фракциях колеблется от 5 до 25 % в зависимости от месторождения исходной нефти.

В этих фракциях присутствуют все метилзамещённые изомеры бензола до С10 включительно. Толуол, м-ксилол и 1,2,4 - триметилбензол представляют основные компоненты нефти. Среди дизамещённых гомологов бензола преобладают 1,3-, среди триалкилбензолов -1,3,5 и 1,2,4-изомеры.

В керосиновых и газойлевых фракциях содержится от 15 до 35 % аренов. Кроме гомологов бензола здесь обнаружены нафталин, бифенил, бифенилэтан и их метилпроизводные. Нафталин присутствует в очень небольших количествах, подтверждая общую закономерность, в соответствии с которой первые члены гомологических рядов всегда находятся в нефтях в меньших концентрациях по сравнению с вышестоящими гомологами. В более высококипящих фракциях присутствуют полициклические арены, такие как антрацен, фенантрен, пирен, флуорен, хризен, перилен и их алкильные (главным образом, метильные) производные.

Среднее содержание аренов, характерное для нефтей СССР различных типов (в % масс, в расчёте на арены): бензольные - 67%, нафталиновые - 18%, фенантреновые - 8%, хризеновые и бензофлуореновые - 3%, пиреновые - 2%, антраценовые 1%, прочие арены - 1. Гомологи фенантрена присутствуют в значительно большем количестве, чем гомологи антрацена, что согласуется с относительным содержанием этих структур в растительных и животных тканях.

Арены являются желательными компонентами карбюраторных топлив, так как обладают высокими октановыми числами (толуол -103, этилбензол - 98).

Присутствие аренов в значительных количествах в дизельном и реактивном топливах ухудшает условие сгорания, и поэтому крайне нежелательно.

Полициклические арены с короткими боковыми цепями ухудшают эксплуатационные свойства масел и поэтому они из них удаляются.

Арены являются ценным сырьём для нефтехимического синтеза, при производстве синтетических каучуков, пластмасс, синтетических волокон, анилино-красочных и взрывчатых веществ, фармацевтических препаратов. Наибольшее значение имеют бензол, толуол, ксилолы, этилбензол, нафталин.2.5. Непредельные углеводородыНепредельные или ненасыщенные углеводороды – это углеводороды, в молекуле которых имеются углеводородные атомы, затрачивающие на связь с соседними атомами углерода более одной валентности – две или три.

Непредельные углеводороды называют ненасыщенными, так как они содержат меньшее число атомов водорода, чем предельные с тем же числом атомов углерода в молекуле.

По числу и характеру кратных связей непредельные углеводороды делятся на алкены, циклоалкены и алкины.2.5.1. Алкены и циклоалкеныАлкены - ненасыщенные соединения, содержащие двойную связь С=С. Раньше эти соединения называли олефинами. Общая формула алкенов Cnh3n.

Ненасыщенные циклические углеводороды с одной двойной связью называются циклоалкенами или циклоолефинами (общая формула Cnh3n-2).

К алкенам и соответственно циклоалкенам причисляют также непредельные углеводороды, содержащие две или более двойных связей.

topuch.ru


Смотрите также