1.4 Образование основных классов углеводородов нети. Классы углеводородов в нефти


1.4 Образование основных классов углеводородов нети. Химия нефти и газа

Похожие главы из других работ:

Алифатические предельные углеводороды и их строение

2. Строение и номенклатура углеводородов ряда метана

Строение углеводородов. В природном газе и особенно в нефти содержится много углеводородов, сходных с метаном по строению и свойствам. Первые четыре вещества этого ряда имеют исторически сложившиеся названия. Названия углеводородов...

Алифатические предельные углеводороды и их строение

3. Химические свойства предельных углеводородов

Наиболее характерными реакциями предельных углеводородов являются реакции замещения. Так, например, при освещении метан реагирует с хлором (при сильном освещении может произойти взрыв)...

Алифатические предельные углеводороды и их строение

4. Применение и получение предельных углеводородов

Применение углеводородов. Высокая теплота сгорания углеводородов обусловливает использование их в качестве топлива. Метан в составе природного газа находит все более широкое применение в быту и на производстве...

Исследование каталитических свойств полимерных комплексов

1.8 Образование ИПЭК

Простейший способ получения ИПЭК - смешение водных растворов, один из которых содержит полианионный, а другой - поликатионный компонент. Образование ИПЭК происходит в результате очень быстрой обратимой реакции ионного обмена...

Методы спектрального анализа. Ультрафиолетовая спектроскопия

3.3 Спектры поглощения основных классов органических соединений

спектроскопия ультрафиолетовый...

Производство этанола методом гидратации этилена

1.4. Выбросы углеводородов

Источником загрязнений атмосферы углеводородами является реактор установки каталитического крекинга. Так как смесь газообразных углеводородов является продуктом процесса...

Разработка установки для производства тетрахлорэтилена мощностью 2000 т/г

2.1 Исчерпывающее хлорирование углеводородов С1 - С3

Процесс получения перхлоруглеродов С1-С3 состоит из следующих основных стадий: 1. хлорирование, 2. закалка и конденсация продуктов реакции, 3. абсорбция хлористого водорода и очистка соляной кислоты, 4...

Роль свободных радикалов в природной среде

3.2.1 Роль углеводородов в тропосферных фотохимических процессах

В атмосферу поступают разнообразные по строению и молекулярной массе углеводороды. Прежде всего это СН4, выделяющийся в естественных процессах (микробиологическая активность в почвах, и антропогенного происхождения...

Свойства аренов

Глава 1.Получение ароматических углеводородов и их свойства.

Известны следующие способы получения ароматических углеводородов: 1) Каталитическая дегидроциклизация алканов, т.е. отщепление водорода с одновременной циклизацией (способ Б.А.Казанского и А.Ф.Платэ)...

Свойства аренов

Глава 2. Химические свойства ароматических углеводородов

ароматический углеводород молекула реакция Арены имеют склонность к реакциям замещения. Бензольное кольцо устойчиво к окислению. 1. Реакции электрофильного замещения. Подвижные р-электроны, образующие электронное облако...

Синтез 4-метоксифенола

Образование аминоазосоединений

Некоторые первичные амины, например нафтиламины и m-фенилендиамин, непосредственно дают аминоазосоединения в условиях, когда из менее реакционноспособных аминов образуются диазоаминосоединения...

Синтез галогенорганических соединений. Реакция галоформного расщепления

1.1 Галогенпроизводные углеводородов

Наиболее простыми производными углеводородов являются галогенпроизводные, в которых один или более атомов водорода в углеводороде замещены атомами галогенов (F, CI, Br, I). Число галогенпроизводных очень велико...

Углеводородный состав прямогонных бензинов

1. Получение нефтяных углеводородов

Необходимое для химической промышленности сырье получают из нефти двумя путями. Один путь состоит в том, что вещество, уже присутствующее в сырой нефти, выделяют из нее или концентрируют чисто физическими методами, например перегонкой...

Физико-химические методы исследования нефтяного шлама

2.3 Выделение и определение ароматических углеводородов

Действие серной кислоты на углеводороды Серная кислота является реагентом, при помощи которого можно установить присутствие углеводородов ароматического ряда в углеводородных смесях...

Хроматографический анализ различных классов веществ

Методы изучениях углеводородов

Хотелось бы немного сказать о первых изучениях смесей углеводородов...

him.bobrodobro.ru

Классификация нефти по углеводородному составу — Мегаобучалка

Общие сведения.

Физические свойства нефти.

Химический состав нефти.

ü Общий состав.

ü Углеводородный состав.

ü Элементный состав нефти и гетероатомные компоненты.

ü Классификация нефти по углеводородному составу.

Методы исследований нефти.

Развитие учения о нефти и нефтепереработке в России.

Разведка новых месторождений.

Запасы.

Экономическое значение.

Общие сведения.

· Нефть - это жидкий природный раствор, состоящий из большого числа углеводородов (УВ) разнообразного строения и высокомолекулярных смолисто-асфальтеновых веществ. В нем растворено некоторое количество воды, солей, микроэлементов.

Добыча нефти и нефтепродуктов, их переработка и транспортировка тяжело сказываются на состоянии и плодородии почвенного покрова Земли. Общеизвестно, что хорошие почвы - это обильное плодородие. Но почвы на нашей планете играют и другую, менее известную, но не менее важную роль. В почвенном покрове Земли и ее гумусовой оболочке сосредоточена основная доля живого вещества суши и его биогенной энергии. Отсюда экологическая система “ почва - организмы “ оказывается одним из главнейших механизмов формирования всей биосферы, ее стабильности и продуктивности в целом.

Охватить весь комплекс проблем, связанных с загрязнением почвенных биоценозов, задача очень сложная и многообразная. В почве, населенной миллиардами организмов, - от бактерий до млекопитающих, включительно, - процессы обмена столь многообразны и сложны, что мы еще только подходим к их пониманию.

Таким образом, невозможно полностью исключить вероятность новых аварий, разливов нефти и нефтепродуктов. В то же время нормативы контроля природопользования становятся с каждым годом все жестче, соответственно возрастают размеры штрафов. Только научно - исследовательские работы могут помочь в решении столь сложной и многоплановой задачи, как загрязнение почв нефтью и нефтепродуктами.

Физические свойства нефти.

Нефть — жидкость от светло-коричневого до тёмно-бурого цвета. Средняя молекулярная масса 220—300 г/моль. Плотность 0,65—1,05 г/см³; нефть, плотность которой ниже 0,83, называется лёгкой, 0,831—0,860 — средней, выше 0,860 — тяжёлой. Плотность нефти, как и других углеводородов, сильно зависит от температуры и давления. Она содержит большое число разных органических веществ и поэтому характеризуется не температурой кипения, а температурой начала кипения жидких углеводородов и фракционным составом — выходом отдельных фракций, перегоняющихся сначала при атмосферном давлении, а затем под вакуумом в определённых температурных пределах, как правило до 450—500 °C, реже 560—580 °C. Температура кристаллизации от −60 до + 30 °C; зависит преимущественно от содержания в нефти парафина и лёгких фракций. Вязкость изменяется в широких пределах, определяется фракционным составом нефти и её температурой, а также содержанием смолисто-асфальтеновых веществ. Удельная теплоёмкость 1,7—2,1 кДж/; удельная теплота сгорания 43,7—46,2 МДж/кг; диэлектрическая проницаемость 2,0—2,5; электрическая проводимость от 2∙10 до 0,3∙10 Ом∙см.

Нефть — легковоспламеняющаяся жидкость; температура вспышки от −35 до +121 °C. Нефть растворима в органических растворителях, в обычных условиях не растворима в воде, но может образовывать с ней стойкие эмульсии. В технологии для отделения от нефти воды и растворённой в ней соли проводят обезвоживание и обессоливание.

Химический состав нефти.

Общий состав.

Нефть представляет собой смесь около 1000 индивидуальных веществ, из которых большая часть — жидкие углеводороды и гетероатомные органические соединения, преимущественно сернистые, азотистые и кислородные, а также металлоорганические соединения; остальные компоненты — растворённые углеводородные газы, вода, минеральные соли, растворы солей органических кислот и др., механические примеси.

Углеводородный состав

В основном в нефти представлены парафиновые и нафтеновые. В меньшей степени — соединения ароматического ряда и смешанного, или гибридного, строения.

Элементный состав нефти и гетероатомные компоненты.

Наряду с углеводородами в состав нефти входят вещества, содержащие примесные атомы. Серосодержащие — h3S, меркаптаны, моно- и дисульфиды, тиофены и тиофаны, а также полициклические и т. п.; азотсодержащие — преимущественно гомологи пиридина, хинолина, индола, карбазола, пиррола, а также порфирины; кислородсодержащие — нафтеновые кислоты, фенолы, смолисто-асфальтеновые и др. вещества. Элементный состав: 82-87 C; 11-14,5 Н; 0,01-6 S; 0,001-1,8 N; 0,005—0,35 O и др. Всего в нефти обнаружено более 50 элементов. Так, наряду с упомянутыми, в нефти присутствуют V, Ni, Cl и т. д. Содержание указанных соединений и примесей в сырье разных месторождений колеблется в широких пределах, поэтому говорить о среднем химическом составе нефти можно только условно.

Таблица 1. Элементный состав нефти различных месторождений.

Месторождение Плотность, г/см³ C H S N O Зола
Ухтинское 0,897 85,30 12,46 0,88 0,14 - 0,01
Грозненское 0,850 85,95 13,00 0,14 0,07 0,74 0,10
Сураханское 0,793 85,34 14,14 0,03 - 0,49 -
Калифорнийское 0,912 84,00 12,70 0,40 1,70 1,20 -

Классификация нефти по углеводородному составу.

Класс углеводородов, по которому нефти даётся наименование, должны присутствовать в количестве более 50 %. Если присутствуют углеводороды также и других классов и один из классов составляет не менее 25 %, выделяют смешанные типы нефти: метано-нафтеновые, нафтено-метановые, ароматическо-нафтеновые, нафтено-ароматические, ароматическо-метановые и метано-ароматические; в них первого компонента содержится более 25 %, второго — более 50 %.

Таблица 2. Содержание основных классов углеводородов в различной нефти.

megaobuchalka.ru

Образование основных классов углеводородов нефти

    Образование основных классов углеводородов нефти [c.14]

    Крекинг газойля. Основная область применения цеолитных катализаторов в промышленности связана с процессом каталитического крекинга дистиллятов первичной перегонки нефти, содержащих алифатические, циклоалифатические (нафтеновые), олефиновые и ароматические углеводороды. При каталитическом крекинге нефтяных фракций протекают реакции дезалкилирования ароматических соединений, крекинга парафинов и олефинов, перераспределения водорода и циклизации олефинов. С основными представлениями о механизмах реакций, которые вносят вклад в процесс крекинга нефтяного сырья на цеолитных катализаторах, мы уже познакомились в предыдущих разделах этой главы. Однако использовать эти представления для анализа превращений отдельных классов углеводородов в крекинге все-таки очень трудно, так как продукты крекинга отличаются очень сложным составом. Первые работы Планка и Росин-ского [161, 297] по крекингу газойля, выкипающего в интервале 260—400° С, показали, что замена алюмосиликатного катализатора на цеолиты типа X дает следуюгцие преимущества 1) более высокую активность, которая сохраняется даже при повышенных содержаниях остаточного кокса, 2) более высокую селективность по бензину (Сз+) и снижение выхода газа (С4-) и кокса, 3) более высокую стабильность при термических и термопаровых обработках, характерных для процесса регенерации катализатора. Эти преимущества становятся еще более заметными при использовании в качестве катализаторов кальций-аммонийной и редкоземельно-аммонийной форм цеолита X. Моску и Моне [148] исследовали влияние жесткости термических и термопаровых обработок катализаторов РЗЭ-Х и РЗЭ- на эффективность крекинга газойля, выкипающего при 272—415° С. Они пришли к выводу, что удаление наиболее сильных кислотных центров в высокотемпературных условиях благоприятно сказывается на повышении выходов бензина. Для того чтобы рассмотреть причины повышения селективности по бензину, обратимся к последовательности превращения газойля, кинетическая модель которого [схема (71)] была разработана Уикманом и Нейсом [298]. В соответствии с этой моделью при первичном крекинге (эта стадия на схеме обозначена символом происходит образование бензина и некоторого количества газа, а также кокса, тогда как при вторичном крекинге (А ,) расщеплению подвергается бензин. [c.109]

    В процессах переработки нефти первоначальное содержание в ней углеводородов различных классов не оказывает определяющего влияния на коррозию оборудования. В связи с этим химическая классификация нефтей на три основные (метановый, нафтеновый, ароматический) и шесть смешанных типов неудобна для выявления агрессивности сырья. Для этой цели в известной степени пригодна технологическая классификация, строящаяся на различном содержании в нефтях общей серы I — малосернистые (до 0,50%), II —сернистые (0,51—1,90%) и III — высокосернистые (более 1,91%). Дело в том, что помимо определяющего влияния на технологию содержание серы в сырье — одна из важнейших причин образования коррозионноактивных веществ в процессе переработки нефти. Однако особенности образования агрессивных сернистых веществ накладывают на применение технологической классификации важные ограничения. [c.11]

    Рассмотренные материалы свидетельствуют о том, что образование всех основных классов углеводородов природных нефтей частично обусловлено процессом биосинтеза углеводородов в живом веществе, но главным образом — термическим или тер- [c.59]

    Рассмотренные материалы свидетельствуют о том, что образование всех основных классов углеводородов природных нефтей частично обусловлено процессом биосинтеза углеводородов в живом веществе, но главным образом — термическим или термокаталитическим превращением липидного материала биогенного сапропелевого органического вещества осадочных пород в зоне катагенеза при проявлении главной фазы нефтеобразования. [c.19]

    Если исходить из совершенно неправдоподобного допущения, что углеводороды нефти сразу, непосредственно возникают из погребенного органического вещества, минуя всевозможные промежуточные стадии, превращение нефти ограничивается переходом одних углеводородов в другие. Сюда же нужно включить не только изменение распределения и соотношения классов углеводородов, но и изменения молекулярного веса, т. е. образование низкомолекулярпых углеводородов из высокомолекулярных. Такое допущение находится в настолько полном противоречии с основными химическими законами, что о нем невозможно говорить даже в предположительной форме. [c.210]

    Изучение курса органической химии начинается с углеводородов. Это вызвано несколькими причинами, главная из которых та, что углеводороды являются основным классом органических соединений. Остальные классы органических соединений — производные углеводородов. Углеводороды — первое звено в цепи генетических превращений органических веществ в живой природе и в химическом производстве. Например, исходное сырье в производстве синтетического каучука — углеводороды природных газов превращаются в этилен, а гидратация этилена ведет к образованию этилового спирта. Из спирта делают бутадиен и затем бутадиен полимеризуют в каучук. Рассмотренная генетическая цепь углеводороды- -каучук выражает тенденцию современной химии к получению всех промышленных продуктов и товаров широкого потребления из самого дешевого сырья — природных газов и нефти, а также прямым синтезом из углерода и водорода. [c.33]

    В последние 10ды у нас и за рубежом проводились комплексные исследования более детального химизма нефтеобразования в условиях, максимально моделирующих природный нефтесинтез (за исключением продолжительности опытов по причине отсутствия у исследователей времени продолжительностью в миллион лет). В результате установлены общие закономерности образования основных классов углеводородов нефти из отдельных групповых компонентов растений и животных организмов, а также продуктов их первичных превращений (химический аргумент). [c.54]

    В предлагаемой книге в качостве основных гипотез принято сапропелевое происхождение нефти и превращение ее в различные классы под влиянием самопроизвольного изменения уровня свободной энергии, ускоряемого природными алюмосиликатами и другими аналогичными породами. Порядок превращения необходимым образом предполагает образование из сапропелитового материала в его различных формах состояния сперва высокомолекулярных и полициклизованных молекул, содержащих гетероатомы, затем превращение этих соединений в углеводороды. Такое направленное изменение энергетического уровня создает причинную взаимосвязь между классами углеводородов и отдельными их представителями. Эти замечания кажутся необходимыми, так как они объясняют, почему в разных местах текста указывается на превращение нефти как на причину, помогающую уяснить себе внутренний характер некоторых закономерностей. [c.4]

    Приведенные доказательства образования главных классов нефтяных углеводородов и.) жирных кислот имеют принципиальное значение. Можно, таким образом, достаточно обоснованно полагать, что жиры и жирные кислоты, входящие во фракцию липоидов в живом веществе и его остатках, во фракцию битумоидов в органическом веществе осадочных пород, могут обеспечить образование основной части нефтей. С количественной стороны это положение было обосновано Н. Б. Вассоевичем. [c.158]

    Образование высокомолекулярных аренов происходит уже после отмирания организмов — в водной голи е и илах. Источником их являются полиеиовые соединения типа каротиноидов. Частично полициклические системы образуются и из стероидных соединений. Однако основная масса аренов, как и других углеводородов, образуется в главной фазе нефтеобразования при термической и термокаталнтической деструкции сапропелевого органического вещества. Химическую основу процесса составляют реакции полимеризации непредельных жирных кислот и других непредельных соединений, о чем свидетельствуют наблюдения в природной обстановке и опыты по лабораторному моделированию этих реакций. Например, в опытах по термокатализу жирных кислот и термолизу керогена сланцев при низких температурах образуется смесь углеводородов, в которой содержатся различные арены в количестве от 15 до 40% (масс.) при этом идентифицированы все классы аренов, входящих в состав битумоидов и нефтей. [c.43]

    Основными компонентами нефтей и нефтяных фракций, наиболее склонными к межмолекулярным и коагуляционным контактам при различных внешних условиях, являются, наряду с высокомолекулярными парафинами, полициклоароматические углеводороды, смолисто-асфальтеновые соединения. Взаимодействие этих компонентов приводит к образованию сложных пространственных структур и экстремальному изменению физико-химических свойств нефтяных систем, поэтому выявление и изучение особенностей механизма этих взаимодействий представляют большой практический интерес. В настоящем разделе рассматриваются результаты экспериментов по изучению межмолекулярных взаимодействий в модельных двух- и трехкомпонентных смесях углеводородов различных классов. [c.148]

chem21.info

4. Групповой углеводородный состав нефти. Классификация нефти

Групповой углеводородный состав нефти позволяет решить во­прос о типе нефти по преобладанию в ней тех или иных углеводород­ных классов (групп). При определении группового состава обычно имеются в виду три основных класса углеводородов: метановые, или парафиновые (алканы), полиметиленовые, или нафтеновые (циклоалканы), и ароматические. Поскольку в состав нефти входит громадное число компонентов, то чаще определяют групповой состав каждой фракции нефти, но при этом необходимо учитывать, что групповой состав меняется от фракции к фракции.

Принцип, положенный в основу классификации нефтей, должен учитывать их характерные особенности, позволяющие проводить различие между ними. Так, в основу классификации, разработанной акад. С. С. Наметкиным, положено содержание в нефти главного компонента (составляющего не менее 50%). Соответственно этому выделяется три типа нефтей: метановые (М), нафтеновые (Н), арома­тические (А). Большое значение имеет также содержание дополни­тельного компонента (составляющего не менее 25%), который при­дает нефти дополнительные специфические свойства. Таким образом, можно наметить еще четыре типа нефтей (в названии основной ком­понент занимает первое место, т. е. буквенные обозначения располо­жены в порядке убывания содержания соответствующих углеводород­ных групп): метано-нафтеновые (МН), нафтено-метановые (НМ), ароматическо-нафтеновые (АН), нафтено-ароматические (НА).

Наконец, может быть случай, когда все три основных компонента представлены приблизительно в равных количествах: метано-нафтено-ароматические (МНА).

Нефти первых трех типов встречаются редко. Из них наиболее распространены нафтеновые нефти (эмбинские, некоторые бакин­ские). Нефти метанового типа в СНГ не встречаются. Нефть, наи­более близкая к третьему, ароматическому типу, в СНГ имеется в месторождении Чусовские городки, однако из-за довольно высокого содержания нафтеновых углеводородов, наряду с ароматическими, ее скорее следует отнести к ароматическо-нафтеновому типу (АН). В большинстве же нефти относятся к перечисленным выше смешан­ным типам. Примером метано-нафтено-ароматического типа может служить майкопская нефть.

Следует еще раз подчеркнуть некоторую условность такой класси­фикации нефтей. Количественное определение углеводородов раз­личных классов проводится не сразу во всей нефти, а в отдельных ее погонах. Довольно часто при переходе от низших погонов к выс­шим отнесение нефти к тому или иному типу может измениться. Приведем пример: грозненская парафинистая нефть при классифика­ции по погонам, выкипающим до 300°С, имеет ярко выраженный метано-нафтеновый характер, а в погонах, выкипающих выше 300°С, нафтены уже преобладают над парафинами (нафтено-метановый тип).

Помимо химической классификации нефтей существует также технологическая классификация, предусматривающая деление неф­тей на типы, существенно различающиеся по технологии их пере­работки. Это определяется, например, содержанием твердого пара­фина, серы, масел и др.

По содержанию парафина

(% масс.):

По содержанию серы

(% масс.):

Малопарафиновые . . . . . .менее 1,5

Малосернистые . . . . . . . менее 0,5

Парафиновые . . . . . . . . . .1,5–6,0

Сернистые . . . . . . . . . . .0,51–2,0

Высокопарафиновые . . . . .более 6,0

Высокосернистые . . . . . . более 2,0

По содержанию фракций, выкипающих до 350°С, и масел

Выход фракций до 350°С (% масс.):

Содержание масел (% масс.):

Менее 30

Менее 15

30–35

15–20

Более 45

Более 20

studfiles.net

Классы углеводородов - Справочник химика 21

    Скорость распространения пламени зависит от давления, при котором происходит процесс горения. При снижении давления ниже атмосферного скорость горения вначале несколько возрастает, а затем падает. Нормальная скорость распространения пламени зависит также от температуры горючей смеси, по которой распространяется пламя. На рис. 51 приведена зависимость нормальной скорости распространения пламени от температуры горючей смеси н-гептана. Как видно, скорость распространения пламени увеличивается с повышением температуры по линейному закону. Этот характер зависимости сохраняется и для других классов углеводородов, при этом изменяется лишь угол наклона прямой относительно оси абсцисс. Большое влияние на нормальную скорость распространения пламени оказывает энергия активации молекул топлива чем меньше энергия активации, тем выше скорость нормального распространения пламени (табл. 15). [c.80]     Энергия разрыва углерод —углеродной связи в молекулах всех классов углеводородов всегда ниже энергии С —Н —связи (примерно на 50 кДж/моль). [c.14]

    Данные, полученные в результате исследования фракции мирзаанской нефти по горизонтам о,содержании различных классов углеводородов, приведены в табл. 1. [c.144]

    Основные выводы по химизму газофазного термолиза различных классов углеводородов сводятся к следующему. [c.35]

    Объемная теплота сгорания зависит не только от соотношения углерод водород, но, как указывалось выше, и от плотности. Зависимость от класса углеводородов выражена более полно. Она изменяется от одного класса углеводородов к другому и различна для разных изомеров. Особенно высокую объемную теплоту сгорания имеют углеводороды с компактным расположением боковых цепей. [c.29]

    КЛАССЫ УГЛЕВОДОРОДОВ В НЕФТИ [c.24]

    Классификация, отражающая только химический состав не — ([зти, предложена сотрудниками Грозненского нефтяного научно-исследовательского института (ГрозНИИ). В основу этой классифи— кации принято преимущественное содержание в нефти одного или несколько из классов углеводородов. Различают 6 типов нефтей парафиновые, парафино-нафтеновые, нафтеновые, парафино —на — ([этено —ароматические, нафтено-ароматические и ароматические. [c.88]

    ДС аренов, в отличие ог других классов углеводородов,не понижается, а наоборот, несколько повышается с увеличением числа углеродных атомов. Их ДС улучшается при уменьшении степени разветвленности и симметричности ее расположения, а также наличии двойных связей в алкильных группах. [c.106]

    С добавлением этиловой жидкости октановые числа бензинов увеличиваются. Восприимчивость бензина к этиловой жидкости, называемая часто приемистостью к ТЭС, зависит от состава бензина — структуры и класса углеводородов — и содержания серы. Восприимчивость бензинов к этиловой жидкости резко снижается при большом содержании в бензине серы, в несколько меньшей мере при увеличенном содержании ароматических углеводородов. [c.66]

    Проблема разделения нефтяных газов, бензинов и в некоторой степени легких газойлей на индивидуальные углеводороды вполне разрешима. Большой прогресс в этом направлении был достигнут в течение последних 20 лет, особенно благодаря систематическим исследованиям, проведенным Национальным бюро стандартов 29 (а) (Проект 6 Американского нефтяного института). Для высококипящих фракций, включая смазочные масла, состоящих из большого числа различных комплексных и совершенно неизвестных углеводородов и других компонентов, эта проблема представляется почти безнадежной. В настоящее время определение и разделение различных классов углеводородов позволяют только приблизиться к познанию химической структуры высокомолекулярных углеводородов, присутствующих в нефти. [c.11]

    Согласно представлениям, принятым в химии нефти, ненасыщенные углеводороды обладают одной или большим числом активных двойных связей в молекуле. В противоположность ароматическим углеводородам двойная связь в ненасыщенных углеводородах обнаруживает способность ко многим реакциям присоединения, например таким, как присоединение галоидов и серной кислоты. Ненасыщенные углеводороды всегда отсутствуют в продуктах прямой гонки, но представляют собой важный класс углеводородов в крекинг-бензинах. Присутствие двойной активной связи легко обнаружить в углеводородах низкого и среднего молекулярного веса, включая газойли. Свойства высокомолекулярных ненасыщенных соединений почти неизвестны, поэтому любые выводы о составе ненасыщенных высококипящих фракций следует считать недостоверными. [c.12]

    Различие между указанными выше классами углеводородов особенно резко для углеводородов низкого и среднего молекулярного веса, присутствие в которых ароматического кольца или двойной связи придает им характерные свойства этих структур. Однако классификация становится сомнительной для высокомолекулярных углеводородов, которые могут содержать ароматические, нафтеновые, олефиновые или парафиновые структуры без обнаружения свойств, характерных для преобладающей структуры. Высокомолекулярные углеводороды смазочных масел с ароматическими и нафтеновыми кольцами и длинными парафиновыми боковыми цепями могут обладать ароматическими, нафтеновыми и парафиновыми свойствами в зависимости от преобладания соответствующих структур. Кольцевой анализ, развитый Уотерманом и его школой, преодолевшими эти трудности, позволяет определять среднее содержание парафиновых боковых цепей, ароматических и нафтеновых колец. В этой главе рассматриваются лишь индивидуальные углеводороды и классы углеводородов, присутствующих в нефти. [c.12]

    Определение и разделение углеводородов и классов углеводородов основаны на применении физических и химических методов. Физические методы являются наиболее важными и, могут быть классифицированы следующим образом  [c.12]

    В табл. 20 приведены сред- 1 ние значения интерцептов ре-фракции для различных классов углеводородов в интервале выкипания бензинов. На рис. 3 приведены соответствующие прямые для моноциклических ароматических углеводородов, а также для моно- и бициклических нафтенов. [c.256]

    Как уже было указано выше, разделение нефти на индивидуальные углеводороды и другие соединения возможно лишь для низкокипящих фракций от бензинов до легких газойлей. Вследствие огромного числа составных частей более тяжелые фракции не могут быть разделены на индивидуальные компоненты существующими аналитическими методами. Поэтому разделение и определение классов углеводородов нефти так же важны, как и разделение и идентификация индивидуальных углеводородов, в особенности для высокомолекулярных нефтяных фракций. [c.24]

    Следует отметить, что процесс, проводимый при помощи мочевины, недостаточно селективен для разделения индивидуальных соединений и даже некоторых фракций (содержащих только один определенный класс углеводородов). Однако посредством многократных экстракционных кристаллизаций можно отделить фракции с большим содержанием нормальных парафинов (и низкими [c.79]

    В табл. 7 приведены данные по составу классов углеводородов в типичных бензинах прямой гонки. Как видно из этой таблицы, все прямогонные [c.24]

    НИЯ 40—102°), изученных Россини ы его сотрудниками. В общем в легких керосинах не наблюдается преобладания парафиновых углеводородов с прямой цепью, изопарафиновых углеводородов, циклопентанов и цикло-гексанов. Однако керосин из мичиганской нефти содержит преимущественно парафиновые углеводороды с прямой цепью, а керосин из нефти месторождения Винклер очень богат изопарафиновыми углеводородами. Следует иметь в виду, что такое распределение четырех классов углеводородов было установлено для узких керосиновых фракций. Это не означает, что в более тянгазойлевых фракциях преобладают эти же типы углеводородов. [c.26]

    До последних 15 лет общее определение и разделение классов углеводородов в высококипящих фракциях и нефтяных продуктах тормозились трудностями разделения парафиновых и циклопарафиновых углеводородов. [c.27]

    Непредельные углеводороды, т. е. углеводороды, имеющие одну или более олефиновых связей в молекуле. Обычно непредельные углеводороды отсутствуют в прямогонных продуктах, но они составляют важный класс углеводородов в продуктах крекинга. Олефиновые связи могут встречаться в каждом из упомянутых выше характерных классов. [c.364]

    Если углеводород содержит структурные группы разных типов, он может быть отнесен к нескольким классам. В соответствии с принятым выше определением в таком случае общее содержание ароматические олефиновые 4- нафтеновые - - парафиновые в нефтяной фракции может быть значительно выше 100%. Чтобы избежать этого осложнения, другие классы углеводородов могут быть определены как нафтено-ароматические и т. п. Вследствие быстро растущего числа и сложности компонентов во фракциях с более высокой температурой кипения та часть сырой нефти, которая может быть в общем определена как масляная часть, практически мало подходит для такого типа анализа. [c.367]

    Прежде чем перейти к рассмотрению некоторых важных вторичных (не связанных с расщеплением) реакций каталитического крекинга, следует остановиться на расщеплении основных классов углеводородов до газообразных продуктов (табл. 7) [14]. Выходы угловодородов от С до [c.131]

    А — регенерировано этилена 13,7 %, бутилена 0,7%, изобутана 11,6 % и жидкого полимера 73,7% В — регенерировано этилена 18,0%, бутилена 0,8%, изобутана 6,4 % и жидкого полимера 74,5%. Жидкий полимер содержат парафины, циклопарафины, олефины и ароматические углеводороды. Присутствие этих различных классов углеводородов указывает на то, что шла смешанная полимеризация. [c.196]

    Представляется возможным, что подобная ситуация справедлива и для высококипящих бензиновых фракций присутствуют все возможные изомеры всех возможных классов углеводородов, большинство из них в незначительном количестве или в виде следов. [c.15]

    В табл. 1-6 [64] дается примерное количество каждого из семи классов углеводородов для двух фракций — керосина и легкого газойля нефти Понка. [c.22]

    Если температурный коэффициент плотности вычертить перпендикулярно плотности, то получаются характерные прямые линии для различных классов углеводородов. Если на парафиновую цепь действует нафтеновое кольцо, то свойства конечного соединения меняются пропорционально в нафтеновом направлении. В пределе молекула будет обладать плотностью парафина неопределенного молекулярного веса, 0,861 [389]. [c.211]

    У1-6. Реакции классов углеводородов [c.326]

    Вызывающие неполадки отложения могут нагреться до необходимой температуры за счет теплоты окисления собственных углеродсодержащих веществ. Преждевременное воспламенение, как было установлено, происходит значительно чаще под влиянием отложений, полученных из топлив, содержащих ТЭС, чем из неэтилированных топлив [206, 207]. Окиси и соли свинца и других металлов понижают температуру воспламенения углерода и стимулируют его сгорание. Таким образом, те условия, которые необходимы для сгорания отложений (увеличенное время при высоких температурах), будут способствовать преждевременному воспламенению. К числу известных факторов такого рода относятся бедность смеси воздух топливо (вследствие чего смесь представляет собой богатый источник кислорода), повышенные температуры воздуха и повышенное давление (наддув), поздняя установка зажигания, повышенная степень сжатия, тип топлива (с увеличением испаряемости снижается образование отложений), источник получения топлива. Так, например, при снижении конца кипения топлива тенденция к преждевременному воспламенению снижается вообще же эта тенденция для различных классов углеводородов уменьшается в такой последовательности ароматические, олефины, парафиновые углеводороды [203, 208]. [c.415]

    Химические методы могут быть использованы или для разделения некоторых классов углеводородов, или для идентификации индивидуальных углеводородов в узких фракциях. Ароматршеские углеводороды могут быть количественно отделены от насыщенных углеводородов сульфированием олефины могут быть количественно и селективно гидрированы при низких температурах в присутствии эффективных катализаторов циклогексаны (исключая четвертичные производные) дегидрируются в ароматические углеводороды над платиновым катализатором и т. д. [c.13]

    Классы углеводородов Кобальтовый катализатор, % об. Железный катализатор, % вес.  [c.594]

    Проведенные исследования по изучению энергетических характеристик нефтяных топлив, отдельных классов углеводородов и раз личных фракций позволили установить, что при наиболее благопри ятных условиях можно будет получить топливо, энергетические характеристики которого будут выше лучших сортов керосина не более чем на 5—7%. Наиболее перспективными в этом отношении являются парафино-нафтеповые углеводороды, выкипающие при температуре 300—350° С и выше. Таким образом, этот путь полу чения высокоэффективных топлив не решает полностью проблемы. [c.91]

    Углеводородный состав оказывает влияние на эксплуатационные свойства реактивных топлив. Некоторые классы углеводородов ухуд1р1ают качество топлив, вследствие чего содержание их [c.13]

    В последние 10ды у нас и за рубежом проводились комплексные исследования более детального химизма нефтеобразования в условиях, максимально моделирующих природный нефтесинтез (за исключением продолжительности опытов по причине отсутствия у исследователей времени продолжительностью в миллион лет). В результате установлены общие закономерности образования основных классов углеводородов нефти из отдельных групповых компонентов растений и животных организмов, а также продуктов их первичных превращений (химический аргумент). [c.54]

    Наиболее важный показатель качества нефти, определяющий Е1ыбор метода переработки, ассортимент и эксплуатационные свой — ства получаемых нефтепродуктов, — химический состав и его распределение по фракциям. В исходных (нативных) нефтях содер — жатся в различных соотношениях все классы углеводородов, кроме непредельных (алкенов) соединений парафиновые (алканы), на-сртеновые (циклоалканы), ароматические (арены) и гибридные -карафино-нафтено-ароматические. [c.60]

    Как и другие характеристики, вязкость нефти и нефтяных фр.1кций зависит от их химического состава и определяется силами межмолекулярного взаимодействия. Чем выше температура кипе — НИ5 нефтяной фракции, тем больше ее вязкость. Наивысшей вязкостью обладают остатки от перегонки нефти и смолисто — асфаль — теиовые вещества. Среди классов углеводородов наименьшую вязкость имеют парафиновые, наибольшую — нафтеновые, а ароматические углеводороды занимают промежуточное положение. Возрастание числа циклов в молекулах циклатюв и аренов, а также удлинение их боковых цепей приводят к повышению вязкости. [c.83]

    При взаимодействии с кислотами углеводороды ведз/т себя как слабые основания. Из всех классов углеводородов наибольшей основностью обладают алкены, при этом основность изоалкенов выше. Полициклические арены являются значительно более силь — [c.91]

    Методы 1—4 действительно позволяют производить разделение углеводородов и классов углеводородов по их свойствам температуре киПения, температуре плавления, адсорбции или растворимости. Методы же 5—7 не могут быть использованы для разделения углеводородов. Они позволяют определять физические свойства, упоз1Янутые выше в методе 5, или же спектры углеводородов. [c.13]

    Частоты, характеризующие тип замещения в бензольном кольце, обсуждались выше. Они возникают и результате колебаний незамещенных вседородных атомов в кольце. Поэтому можно было бы ожидать развития количественных методов, которые позволяли бы характеризовать алкилбензолы ]j соответствии с положением замещения. В литературе пока еще отсутствуют подобные работы, но несодшенно, что эта задача, а также многие другие применения колебательных спектров для других классов углеводородов станут предметом да.льнейшого изучения. [c.333]

    Тсношиые данные о составе тяжелых фракций. Принято считать и экспериментально установлено, что число компонентов нефтяной фракции тем бэльше, чем выше ее температура кипения. Кроме того, как показано ниже, различия между основными классами углеводородов с повышением температуры кипения выражаются все менее резко. Поэтому тяжелые фракции обладают чрезвычайно сложным состав эм, изучение которого с целью идентификации индивидуальных компонентов является довольно безнадежным делом, имеющим малую практическую ценность. Попытки выделить индивидуальные углеводороды из фракций смазочных масел до сих пор были безуспешными, если не считать к-парафинов и немногих высококонденсированных полиароматических углеводородов число компонентов настолько велико, что для их изучения необходима очень тщательная и весьма трудоемкая работа. [c.363]

    Табл. 5 содержит наиболео доетовернг.1е данные ио процентному содержанию основных классов углеводородов в синтетических бензинах. Понятно, что состав бензинов может отклонятьс5 от приведенных в таблице данных в зависимости от природы сырья и условий процесса. Состав каталитических крекинг-бензинов, в частности, зависит от изменений температуры, времени контакта и активности катализатора. [c.56]

    Теория термического крекинга с участием свободных радикалов быда выдвинута Райсом и сотрудниками [26, 31, 32, 33]. Ее применимость к высшим парафинам была подтверждена Воджем и Гудом [40], а распространение ее на другие классы углеводородов обсуждалось Гринсфельдером, Воджем и Гудом [19]. Литература но этому вопросу в настоящее время содержит очевидные доказательства свободнорадикального механизма для многих органических реакций. По-видимому, теория Райса-Косякова хотя и требует некоторого улучшения в деталях, является все же наиболее удовлетворительным объяснением термического крекинга углеводородов. [c.117]

    Так как указанное различие в анергиях меиее выражено для свободно-радикальЕШх реакций, то можно сделать вывод, что обычно при каталитическом крекинге влияние структуры молекулы на скорость и характер начального разложения больше, чем при термическом. Однако для более глубокого рассмотрения обоих видов крекинга следует принимать во внимание значительные вторичные реакции олефинов в ионных системах, что будет рассмотрено ния е. При каталитическом крекинге вследствие многочисленных перегруппировок в образовавшихся первоначально олефинах, конечный продукт является результатом наложения равновесной смеси вторичных продуктов реакций олефинов на первичные продукты крекинга. В силу этого конечная смесь углеводородов до известной степени не зависит от структуры исходной молекулы. Таким образом, присутствие большого количества олефинов, получаемых, как было сказано выше, при крекинге любого из основных классов углеводородов, может являться и действительно является причиной таких реакций, которые затемняют, по крайней мере частично, влияние структуры на начальные стадии разложения. Вторичные реакции олефинов менее выражены в свободнорадикальных системах и поэтому наблюдается кажущийся парадокс, — конечные продукты каталитического крекинга, особенно полученные при крекинге нефтяных фракций, на первый взгляд, меньше зависят от характера структур в исходном веществе, чем при термическом крекинге. По аналогии с механизмом присоединения протона к олефинам может произойти соединение иона карбония с олефином, что приведет к образованию нового большего иона карбония  [c.120]

    Гидрогенизация на никелевом катали.заторе при повышенных температуре и давлении. Относительную активность различных классов углеводородов к реакции каталитической гидрогенизации можно представить следующим образом олефины с открытой цепью > д иклоолефины > [c.247]

    Таким образом, проведенные глубокие исследования жидких продуктов окислительной каталигической конверсии тяжелого нефтяного сырья, позволили не только установить их подробный состав и строение основных классов углеводородов, по U подтвердить то, что наблюдаемые закоиомсрнос-тп нх образования обусловлены протеканием окислительно-восстановительных реакций. Показано наличие в продуктах каталитического крекинга классов соединений, аналогичных продуктам окислительной каталитической конверсии, которое подтверждает высказанное нами ранее предположение [c.55]

    Получил распространение метод распределительной хроматографии, в котором применяются некоторые фторорганические соединения в качестве жидкой фазы. Этот метод можно с успехом применять для отделения алканов (и особенно изоалканов) от цикланов [39]. Эти же классы углеводородов можно разделить, используя метод распределительной хроматографии с вытеснением жидкостью [40]. [c.13]

    Второй метод основан на разделении масляной фракции на со-ч тавляющие классы углеводородов настолько полно, насколько это возможно. Для этого используются в надлежащей последовательности все имеющиеся физические методы перегонка под вакуумом, адсорбция, карбамидная очистка, экстракция растворителями, термическая диффузия. [c.26]

    На количество образующегося кокса влияет не только химический состав основной массы сырья, но также присутствие небольших количеств асфальтовых соединений. Количество таких соединений может измеряться числом осмоления — количеством вещества, удаляемым серной кислотой [97], или коксовым числом (ASTM D 189-52). Последнее определение можно сделать более чувствительным, если находить коксовое число для 10 %-ной наиболее высококипящей фракции вещества. Если значение коксового числа превышает 0,12%, значит, нри крекинге будет образовываться избыточное количество кокса. В зависимости от характера сырья изменяют режим процесса, причем стараются добиться достаточно высокого выхода бензина при минимальном отложении кокса в аппаратуре. Выбор режима процесса следует связывать также с изменениями в стабильности фракций, которая зависит от соотношения между различными классами углеводородов и от соотношения между гомологами внутри определенного класса. Следует учесть, что, конечно, необходимые изменения в технологии зачастую незначительны. [c.309]

chem21.info