Динамика развития пожаров в резервуарах с горячими жидкостями. Линейная скорость прогрева нефти


Линейная скорость прогрева - это... Что такое Линейная скорость прогрева?

 Линейная скорость прогрева

"...Линейная скорость прогрева - изменение толщины гомотермического слоя в единицу времени..."

Источник:

" РУКОВОДСТВО ПО ТУШЕНИЮ НЕФТИ И НЕФТЕПРОДУКТОВ В РЕЗЕРВУАРАХ И РЕЗЕРВУАРНЫХ ПАРКАХ"

(утв. ГУГПС МВД РФ 12.12.1999)

Официальная терминология. Академик.ру. 2012.

  • Линейная скорость выгорания
  • Линейно-кабельные сооружения связи

Смотреть что такое "Линейная скорость прогрева" в других словарях:

  • Линейная скорость прогрева — изменение толщины гомотермического слоя в единицу времени. Источник: Руководство по тушению нефти и нефтепродуктов в резервуарах и резервуарных парках Линейная скорость прогрева изменение толщины гомотермического слоя в единицу времени …   Словарь-справочник терминов нормативно-технической документации

  • линейная — 98 линейная [нелинейная] электрическая цепь Электрическая цепь, у которой электрические напряжения и электрические токи или(и) электрические токи и магнитные потокосцепления, или(и) электрические заряды и электрические напряжения связаны друг с… …   Словарь-справочник терминов нормативно-технической документации

  • Руководство по тушению нефти и нефтепродуктов в резервуарах и резервуарных парках — Терминология Руководство по тушению нефти и нефтепродуктов в резервуарах и резервуарных парках: Карман объем, в котором горение и прогрев жидкости, а также тепломассообмен при подаче воздушно механической пены происходит независимо от остальной… …   Словарь-справочник терминов нормативно-технической документации

  • snip-id-7251: Руководство по тушению нефти и нефтепродуктов в резервуарах и резервуарных парках — Терминология snip id 7251: Руководство по тушению нефти и нефтепродуктов в резервуарах и резервуарных парках: Карман объем, в котором горение и прогрев жидкости, а также тепломассообмен при подаче воздушно механической пены происходит независимо… …   Словарь-справочник терминов нормативно-технической документации

  • ХРОМАТОГРАФИЯ С ПРОГРАММИРОВАНИЕМ ТЕМПЕРАТУРЫ — (температурно градиентная хроматография), газовая хроматография (ГХ), в к рой разделение в в проводят при заданном режиме изменения т ры хроматографич. колонки. Этот вид ГХ применяют для сокращения времени анализа смесей в в, кипящих в широком… …   Химическая энциклопедия

  • время — 3.3.4 время tE (time tE): время нагрева начальным пусковым переменным током IА обмотки ротора или статора от температуры, достигаемой в номинальном режиме работы, до допустимой температуры при максимальной температуре окружающей среды. Источник …   Словарь-справочник терминов нормативно-технической документации

  • Автомобильная светотехника — Автомобильная светотехника  комплекс световой техники, использующийся для сигнализации и освещения. Автомобильное освещение монтируется в передней, в задней, а также в боковых частях транспортного средства в виде фар или фонарей. Установка… …   Википедия

official.academic.ru

скорость прогрева — с русского на английский

См. также в других словарях:

  • Линейная скорость прогрева — изменение толщины гомотермического слоя в единицу времени. Источник: Руководство по тушению нефти и нефтепродуктов в резервуарах и резервуарных парках Линейная скорость прогрева изменение толщины гомотермического слоя в единицу времени …   Словарь-справочник терминов нормативно-технической документации

  • Линейная скорость прогрева — изменение толщины гомотермического слоя в единицу времени... Источник: РУКОВОДСТВО ПО ТУШЕНИЮ НЕФТИ И НЕФТЕПРОДУКТОВ В РЕЗЕРВУАРАХ И РЕЗЕРВУАРНЫХ ПАРКАХ (утв. ГУГПС МВД РФ 12.12.1999) …   Официальная терминология

  • Скорость остывания бетона — – снижение температуры в единицу времени при остывании бетона после прогрева. [Терминологический словарь по бетону и железобетону. ФГУП «НИЦ «Строительство» НИИЖБ им. А. А. Гвоздева, Москва, 2007 г. 110 стр.] Рубрика термина:… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • линейная — 98 линейная [нелинейная] электрическая цепь Электрическая цепь, у которой электрические напряжения и электрические токи или(и) электрические токи и магнитные потокосцепления, или(и) электрические заряды и электрические напряжения связаны друг с… …   Словарь-справочник терминов нормативно-технической документации

  • Руководство по тушению нефти и нефтепродуктов в резервуарах и резервуарных парках — Терминология Руководство по тушению нефти и нефтепродуктов в резервуарах и резервуарных парках: Карман объем, в котором горение и прогрев жидкости, а также тепломассообмен при подаче воздушно механической пены происходит независимо от остальной… …   Словарь-справочник терминов нормативно-технической документации

  • snip-id-7251: Руководство по тушению нефти и нефтепродуктов в резервуарах и резервуарных парках — Терминология snip id 7251: Руководство по тушению нефти и нефтепродуктов в резервуарах и резервуарных парках: Карман объем, в котором горение и прогрев жидкости, а также тепломассообмен при подаче воздушно механической пены происходит независимо… …   Словарь-справочник терминов нормативно-технической документации

  • Дизельное топливо — (Diesel) Определение дизельного топлива, разновидности и характеристики дизельного топлива Информация об определении дизельного топлива, разновидности и характеристики дизельного топлива Содержание Содержание 1. Что такое и как с ним бороться 2.… …   Энциклопедия инвестора

  • ГОРЕНИЕ — физ. хим. процесс, при к ром превращение в ва сопровождается интенсивным выделением энергии и тепло и массообменом с окружающей средой. В отличие от взрыва и детонации протекает с более низкими скоростями и не связано с образованием ударной волны …   Химическая энциклопедия

  • СУШКА — удаление жидкости (чаще всего влаги воды, реже иных жидкостей, напр. летучих орг. р рителей) из в в и материалов тепловыми способами. Осуществляется путем испарения жидкости и отвода образовавшихся паров при подводе к высушиваемому материалу… …   Химическая энциклопедия

  • Атмосферный ядерный взрыв — Высокий воздушный взрыв Questa (Операция Доминик) Атмосферный ядерный взрыв  ядерный взрыв, происходящий в достаточно плотном …   Википедия

  • УДАРНАЯ ВОЛНА — (скачок уплотнения), распространяющаяся со сверхзвуковой скоростью тонкая переходная область, в к рой происходит резкое увеличение плотности, давления и скорости в ва. У. в. возникают при взрывах, детонации, при сверхзвуковых движениях тел, при… …   Физическая энциклопедия

translate.academic.ru

1. Возникновение и развитие пожаров в резервуарах и резервуарных парках

1.1. Возникновения пожара

1.1.1. Возникновение пожара в резервуаре зависят от следующих факторов: наличия источника зажигания, свойств горючей жидкости, конструктивных особенностей резервуара, наличия взрывоопасных концентраций внутри и снаружи резервуара. Краткая характеристика резервуаров и резервуарных парков представлена в приложении 1.

Пожар в резервуаре в большинстве случаев начинается с взрыва паровоздушной смеси. На образование взрывоопасных концентраций внутри резервуаров оказывают существенное влияние физико-химические свойства хранимых нефти и нефтепродуктов, конструкция резервуара, технологические режимы эксплуатации, а также климатические и метеорологические условия. Взрыв в резервуаре приводит к подрыву (реже срыву) крыши с последующим горением на всей поверхности горючей жидкости. При этом, даже в начальной стадии, горение нефти и нефтепродуктов в резервуаре может сопровождается мощным тепловым излучением в окружающую среду, а высота светящейся части пламени составлять 1 - 2 диаметра горящего резервуара. Отклонение факела пламени от вертикальной оси при скорости ветра около 4 мс-1составляет 60 - 70.

1.1.2. Факельное горение может возникнуть на дыхательной арматуре, местах соединения пенных камер со стенками резервуара, других отверстиях или трещинах в крыше или стенке резервуара при концентрации паров нефтепродукта в резервуаре выше верхнего концентрационного предела распространения пламени (ВКПРП).

Если при факельном горении наблюдается черный дым и красное пламя, то это свидетельствует о высокой концентрации паров горючего в объеме резервуара, и опасность взрыва незначительная. Сине-зеленое факельное горение без дымообразования свидетельствует о том, что концентрация паров продукта в резервуаре близка к области воспламенения и существует реальная опасность взрыва.

1.1.3. На резервуаре с плавающей крышей возможно образование локальных очагов горения в зоне уплотняющего затвора, в местах скопления горючей жидкости на плавающей крыше.

1.1.4. При хранении нефти и нефтепродуктов в условиях низких температур возможно зависание понтона или плавающей крыши при откачке продукта из резервуара, что может привести к падению их с последующим возникновением пожара.

  1. Условиями для возникновения пожара в обваловании резервуаров являются: перелив хранимого продукта, нарушение герметичности резервуара, задвижек, фланцевых соединений, наличие пропитанной нефтепродуктом теплоизоляции на трубопроводах и резервуарах.

1.2. Развитие пожара

1.2.1. Дальнейшее развитие пожара зависит от места его возникновения, размеров начального очага горения, устойчивости конструкций резервуара, климатических и метеорологических условий, оперативности действий персонала объекта, работы систем противопожарной защиты, времени прибытия пожарных подразделений.

1.2.2. На основе анализа пожаров и аварий, происшедших как у нас в стране, так и за рубежом, а также материалов научных исследований пожары в резервуарах и резервуарных парках могут развиваться по следующим вариантам (рис. 1.2)[9, 10].

Пожары подразделяются на следующие уровни:

первый (А) - возникновение и развитие пожара в одном резервуаре без влияния на соседние;

второй (Б) - распространение пожара в пределах одной группы;

Рис. 1.2.Схема вероятных сценариев развития пожара в резервуарном парке

третий (В) - развитие пожара с возможным разрушением горящего и соседних с ним резервуаров, переходом его на соседние группы резервуаров и за пределы резервуарного парка.

1.2.3. На резервуарах с плавающей крышей в результате теплового воздействия локального очага горения происходит разрушение герметизирующего затвора, а полная потеря плавучих свойств и затопление крыши в реальных условиях может произойти через один час.

При низком уровне нефтепродукта, когда горение происходит под понтоном или плавающей крышей, условия тушения пожара усложняются. Проникновению пены на свободную поверхность нефтепродукта препятствуют корпус понтона (плавающей крыши) и элементы герметизирующего затвора.

1.2.4. В железобетонном резервуаре в результате взрыва происходит разрушение части покрытия. Горение на участке образовавшегося проема сопровождается обогревом железобетонных конструкций покрытия. Через 20-30 мин. возможно обрушение конструкций и увеличение площади пожара.

1.2.5. Развитие пожара в обваловании характеризуется скоростью распространения пламени по разлитому нефтепродукту, которая составляет для жидкости, имеющей температуру ниже температуры вспышки - 0,05 мс-1, а при температуре жидкости выше температуры вспышки - более 0,5 мс-1. После 10-15 мин. воздействия пламени происходит потеря несущей способности маршевых лестниц, выход из строя узлов управления коренными задвижками и хлопушами, разгерметизация фланцевых соединений, нарушение целостности конструкции резервуара, возможен взрыв в резервуаре.

1.2.6. Одним из наиболее важных параметров, характеризующих развитие пожара в резервуаре, является его тепловой режим. В зависимости от физико-химических свойств горючих жидкостей возможен различный характер распределения температур в объеме жидкости. При горении керосина, дизельного топлива, индивидуальных жидкостей значение температуры экспоненциально снижается от температуры кипения на поверхности до температуры хранения в глубинных слоях. Характер кривой распределения температуры горючей жидкости изменяется с увеличением времени горения /11,12/.

При горении мазута, нефти, некоторых видов газового конденсата и бензина в горючем образуется прогретый до температуры кипения топлива гомотермический слой[11, 12], увеличивающийся с течением времени.

Линейные скорости выгорания и прогрева нефти и нефтепродуктов во многом зависят от скорости ветра, обводненности продукта, характера обрушения крыши, организации охлаждения стенок резервуара. Значения скоростей выгорания и прогрева горючих жидкостей, необходимые для проведения расчетов, приведены в табл. 1.1.

Cувеличением скорости ветра до 8-10 мс-1,скорость выгорания горючей жидкости возрастает на 30 - 50 %. Сырая нефть и мазут, содержащие эмульсионную воду, могут выгорать с большей скоростью, чем указано в табл. 1.1.

Накопление тепловой энергии в горючем оказывает значительное влияние на увеличение расходов пенных средств. Кроме того, увеличение времени свободного развития пожара повышает опасность его распространения на соседние резервуары, способствует образованию факторов, усложняющих тушение, создает угрозу вскипания, выброса.

1.2.7. Горение нефти и нефтепродуктов в резервуарах может сопровождаться вскипанием и выбросами. Вскипание горючей жидкости происходит из-за наличия в ней взвешенной воды, которая при прогреве горящей жидкости выше 100 С испаряется, вызывая вспенивание нефти или нефтепродукта. Вскипание может произойти примерно через 60 минут горения при содержании влаги в нефти (нефтепродукте) более 0,3 %. Вскипание также может произойти в начальный период пенной атаки при подаче пены на поверхность горючей жидкости с температурой кипения выше 1000С [3]. Этот процесс характеризуется бурным горением вспенившейся массы продукта.

При горении жидкости на верхнем уровне взлива возможен перелив вспенившейся массы через борт резервуара, что создает угрозу людям, увеличивает опасность деформации стенок горящего резервуара и перехода огня на соседние резервуары и сооружения.

Таблица 1.1

studfiles.net

Динамика развития пожаров в резервуарах с горячими жидкостями

Горение жидкости в резервуаре представляет собой горение паровоздушной смеси, образующейся над зеркалом горючей жидкости.

Поток пара к зоне горения поступает непрерывно благодаря процессу испарения, который, в свою очередь, определяется интенсивностью лучистого теплового потока из зоны горения к зеркалу горючей жидкости. Кислород, необходимый для горения, поступает в зону горения из окружающей среды вместе с воздухом, интенсивно притекающим в зону горения под действием сил конвективной молярной диффузии. Поэтому пламя горючих жидкостей в резервуарах является диффузионным, когда процесс перемешивания горючего и окислителя происходит непосредственно перед зоной протекания химических реакций. Молярная диффузия в значительной степени определяет интенсивность горения, полноту сгорания, скорость выгорания, скорость распространения горения, температуру пламени и другие параметры пожара.

Известно, что характер, форма и размеры пламени при прочих равных условиях определяются видом горючей жидкости, ее температурой и размерами сосуда. Для небольших сосудов характерны ламинарные режимы горения. С увеличением объемов сосудов режим горения переходит в турбулентный. Горение жидкостей в технических резервуарах в большинстве случаев бывает турбулентным.

Высота пламени горящего резервуара прямо пропорциональна его диаметру. Для турбулентных пламен резервуаров диаметром от 2 до 23 м относительная высота пламени может быть принята равной:

- для бензина ;

- для дизельного топлива ;

- для этилового спирта .

На высоту факела пламени резервуара большое влияние оказывает скорость ветра. Ветер дополнительно интенсифицирует процесс горения за счет лучшего притока кислорода в зону горения.

При скорости ветра >1 м/с относительное увеличение высоты пламени и отклонение его от вертикальной оси горючих жидкостей различно. При скорости ветра около 4 м/с и более отклонение факела пламени от вертикальной оси составляет 60-70°, т.е. пламя практически горизонтально, и массовая скорость выгорания горючей жидкости возрастает на 45-50%.

При тушении горящих жидкостей в резервуарах, необходимо знать температуру факела пламени и его лучистый тепловой поток. На температуру большое влияние оказывают турбулентные пульсации и метеорологические условия, поэтому она непрерывно изменяется. В табл. 3.1. приведены средние температуры и лучистые тепловые потоки факела пламени горящей жидкости в резервуаре с нефтепродуктами и этилового спирта при различных его диаметрах. Из табл. 3.1. видно, что с увеличением диаметра резервуара средняя температура факела пламени уменьшается, а лучистый тепловой поток возрастает.

 

Таблица 3.1.

 

Горючие жидкости Диаметр резер- вуара, м q, Вт/м²
Бензин А-66 22,8 18,6
Дизельное топливо 22,8 2,7
Этиловый спирт 2,7 8,5 - -

 

Лучистый тепловой поток факела пламени при горении жидкостей в резервуарах в основном определяется излучением сажистых частиц и промежуточных продуктов разложения, которые присутствуют в пламени. Как известно, при горении жидкостей со свободной поверхности в большинстве случаев образуется светящееся пламя. Светимость пламени возникает в результате процесса разложения (пиролиза) паров горючих жидкостей при их движении с поверхности зеркала к фронту горения. В результате этого возникают новые фазы – твердого сажистого углерода, жидких и твердых промежуточных углеводородных соединений.

Зона теплового воздействия при пожаре в резервуаре определяется в большинстве случаев лучистым тепловым потоком.

Экспериментально установлено, что по мере снижения уровня жидкости в резервуаре скорость ее выгорания уменьшается. Изменение уровня жидкости с течением времени описывается эмпирическим уравнением:

Н=Кτn, (3.9.)

где: Н - уровень ГЖ в резервуаре, м; К - коэффициент пропорциональности; τ- время, с; n - показатель степени, колеблющийся от 0,55 до 0,75.

Экспериментально установлено, что при горении жидкостей распределение температур по толщине может быть двух типов. В одном случае передача тепла с поверхности жидкости в глубину осуществляется теплопроводностью, что приводит к прогреву жидкости на небольшую глубину (2-5 см). Температура в прогретом слое быстро понижается с увеличением расстояния от поверхности жидкости (рис.3.5). Величина прогретого слоя остается постоянной и не изменяется по мере выгорания жидкости.

При горении жидкостей в резервуарах большого диаметра характер прогрева существенно отличается от первого. При горении возникает прогретый слой, толщина которого растет во времени, а температура в этом слое почти одинакова с температурой на поверхности жидкости. Такой слой называют гомотермическим.

Распределение первого типа характерно для горения керосина, трансформаторного и солярового масел, дизельного топлива и других жидкостей с высокой температурой кипения. При их горении температура стенки резервуара чаще всего не превышает температуры кипения, поэтому не возникает интенсивных конвективных токов, а следовательно, и быстрого прогрева жидкостей вглубь.

Если при горении любых жидкостей охлаждать стенки резервуара, то гомотермического слоя не возникает, так как прогрев вглубь осуществляется в основном теплопроводностью. Прямым следствием образования гомотермического слоя при горении некоторых видов горючих жидкостей является выброс их из резервуара. Он обусловлен вскипанием перегретых слоев воды, расположенных под гомотермическим слоем горючей жидкости. Выброс происходит в тот момент, когда толща прогретого слоя достигает уровня воды. Это явление приводит к резкому увеличению площади пожара, интенсификации его распространения и развития. Кроме того, это явление представляет большую опасность для личного состава.

Кроме явления выброса, при определенных условиях может наблюдаться вскипание нефтепродуктов. К вскипанию способны все нефтепродукты, имеющие в своем составе воду и прогревающиеся при горении выше 100°С. В процессе прогрева нефтепродукта влага, находящаяся в верхних слоях, частично опускается в нижележащие и постепенно на границе прогретых и холодных слоев накапливается слой с повышенным содержанием влаги. Когда температура обводненного слоя повышается до 100°С и выше, начинается парообразование. Пузырьки водяного пара, двигаясь вверх, вспенивают нефтепродукт, объем его увеличивается, и если высота свободного борта невелика, то горящий вспененный нефтепродукт переливается через борт резервуара.

Открыто горящий резервуар с сорванной крышей оказывает сильное воздействие на окружающее пространство и в большинстве случаев является решающим фактором развития и распространения пожара. Из экспериментальных данных известно, что формирование пламени над поверхностью ГЖ в резервуаре завершается за 2 минуты. Температура пламени, в зависимости от вида горючей жидкости, колеблется в пределах 1000- 1500 ºС. Следовательно, процесс развития пожара в резервуаре можно рассматривать как стационарный процесс.

В первые минуты горения на поверхности жидкости устанавливается температура, близкая к температуре кипения данной жидкости или равная средней температуре кипения многофракционной жидкости. Температуру горения нефти существенно снижают примеси легких фракций и воды, и лишь по мере выгорания легких фракций температура горящей нефти возрастает до средней температуры кипения. Аналогичным свойством обладает обводненный мазут.

В резервуаре с диаметром d> 2 м – нефть и нефтепродукты выгорают с практически постоянной линейной скоростью: 0,3 м/ч – бензин; 0,15 м/ч нефть (с увеличением скорости ветра до 8-10 м/с линейная скорость выгорания возрастает на 30-50%).

В резервуаре с понтоном и плавающей крышей (при сохранении их плавучести) начальное горение происходит в разгерметизированном кольцевом зазоре.

При горении в зазоре у высокой свободной стенки подвод воздуха оказывается односторонним, вследствие чего высота факела возрастает в 2 раза. Однако, вследствие незначительной оптической толщины пламени, его излучательная способность падает.

Сокращением размеров пламени в резервуаре с плавающей крышей и понтоном, а также частично подорванной стационарной крышей, обусловлены некоторые положительные эффекты в начальной стадии пожара:

- низкая скорость выгорания;

- отсутствие опасного прогрева жидкости;

- отсутствие теплового воздействия на соседние резервуары.

На пожаре в вертикальном ….. резервуаре (РВС) немаловажное значение имеет его огнестойкость. При рассмотрении этого вопроса, прежде всего необходимо условно разделить резервуар на две части - нижнюю и верхнюю, граница между которыми определяется уровнем жидкости в процессе пожара. Нижняя часть, заполненная жидкостью, подобно водонаполненной конструкции, обладает высокой степенью огнестойкости.

Огнестойкость не смачиваемой верхней части зависит от условий горения и является низкой, что создает определенные трудности в ликвидации пожара.

При высоком уровне жидкости возможно сохранение огнестойкости стенки в условиях пожара. Наблюдаемая на практике деформация верхних поясов горящих РВС может быть вызвана отрицательными последствиями поздно начатого охлаждения водяными струями.

Огнестойкость несмачиваемой части резервуара значительно падает с понижением уровня жидкости. Если к моменту прибытия пожарных подразделений стенка не разрушилась, то требуется эффективное и немедленное охлаждение, т.к. в результате задержки этого мероприятия возможна деформация стенки, особенно при низком уровне жидкости в РВС, видимые деформации наступают уже через 5- 15 мин.

В таких случаях снижение температуры стенки даже при достаточном количестве сил и средств становится затруднительным, т.к. деформированные стенки оказываются недоступными для эффективного охлаждения, в результате чего нарушается нормальное растекание и огнетушащий эффект подаваемой на тушение пены.

Огневые опыты в резервуаре с плавающей крышей (РВС-ПК) – 5000 м³ показали, что при свободном горении жидкости в кольцевом пространстве свыше 15 мин пожар распространяется за пределы расчетной площади, а при длительном горении происходит затопление крыши, после чего РВС превращается в обычный, с горением жидкости на всей площади зеркала жидкости.

При горении жидкостей в резервуарах возникает поверхностный нагретый слой, температура которого равна температуре на поверхности горящей жидкости. Ввиду постоянства температуры жидкости в нагретом слое, его называют гомотермическим. Толщина этого слоя растет со временем, достигая некоторого предельного значения или охватывая всю массу горящей жидкости. Формирование нагретого слоя – одна из причин и одно из необходимых условий возникновения вскипания и выброса горящей жидкости, особо опасных явлений, сопутствующих пожарам нефти и некоторых нефтепродуктов в подземных и наземных резервуарах, что приводит к резкому увеличению масштабов и тяжести последствий пожаров, а иногда и к человеческим жертвам. Скорость прогрева нефти 0,25-0,4 м/час, мазута- 0,3 м/час. Сырая необезвоженная нефть примерно через час с начала пожара может вскипать с переливом через борт резервуара, если величина свободного борта менее 1,5 м.

Ориентировочно время выброса можно рассчитать по формуле:

высота вертикальной стенки резервуара, м

высота слоя подтоварной воды, м

высота свободного борта резервуара, м

скорость понижения уровня ГЖ вследствие откачки, при ее отсутствии ;

Vпрог – скорость прогрева ГЖ…., м/час;

Vл – линейная скорость выгорания ГЖ, м/час;

Для выталкивания горящей жидкости из резервуара достаточно вскипания слоя данной воды 5-10 мм.

Похожие статьи:

poznayka.org

Линейная скорость прогрева - это... Что такое Линейная скорость прогрева?

 Линейная скорость прогрева

Линейная скорость прогрева - изменение толщины гомотермического слоя в единицу времени.

Линейная скорость прогрева - изменение толщины гомотермического слоя в единицу времени.

Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.

  • линейная скорость потока воздуха u,
  • ЛИНЕЙНАЯ СТАНЦИЯ

Смотреть что такое "Линейная скорость прогрева" в других словарях:

  • Линейная скорость прогрева — изменение толщины гомотермического слоя в единицу времени... Источник: РУКОВОДСТВО ПО ТУШЕНИЮ НЕФТИ И НЕФТЕПРОДУКТОВ В РЕЗЕРВУАРАХ И РЕЗЕРВУАРНЫХ ПАРКАХ (утв. ГУГПС МВД РФ 12.12.1999) …   Официальная терминология

  • линейная — 98 линейная [нелинейная] электрическая цепь Электрическая цепь, у которой электрические напряжения и электрические токи или(и) электрические токи и магнитные потокосцепления, или(и) электрические заряды и электрические напряжения связаны друг с… …   Словарь-справочник терминов нормативно-технической документации

  • Руководство по тушению нефти и нефтепродуктов в резервуарах и резервуарных парках — Терминология Руководство по тушению нефти и нефтепродуктов в резервуарах и резервуарных парках: Карман объем, в котором горение и прогрев жидкости, а также тепломассообмен при подаче воздушно механической пены происходит независимо от остальной… …   Словарь-справочник терминов нормативно-технической документации

  • snip-id-7251: Руководство по тушению нефти и нефтепродуктов в резервуарах и резервуарных парках — Терминология snip id 7251: Руководство по тушению нефти и нефтепродуктов в резервуарах и резервуарных парках: Карман объем, в котором горение и прогрев жидкости, а также тепломассообмен при подаче воздушно механической пены происходит независимо… …   Словарь-справочник терминов нормативно-технической документации

  • ХРОМАТОГРАФИЯ С ПРОГРАММИРОВАНИЕМ ТЕМПЕРАТУРЫ — (температурно градиентная хроматография), газовая хроматография (ГХ), в к рой разделение в в проводят при заданном режиме изменения т ры хроматографич. колонки. Этот вид ГХ применяют для сокращения времени анализа смесей в в, кипящих в широком… …   Химическая энциклопедия

  • время — 3.3.4 время tE (time tE): время нагрева начальным пусковым переменным током IА обмотки ротора или статора от температуры, достигаемой в номинальном режиме работы, до допустимой температуры при максимальной температуре окружающей среды. Источник …   Словарь-справочник терминов нормативно-технической документации

  • Автомобильная светотехника — Автомобильная светотехника  комплекс световой техники, использующийся для сигнализации и освещения. Автомобильное освещение монтируется в передней, в задней, а также в боковых частях транспортного средства в виде фар или фонарей. Установка… …   Википедия

normative_reference_dictionary.academic.ru