ПИРОЛИЗ УГЛЕВОДОРОДНОГО СЫРЬЯ. Пиролиз нефти уравнение реакции


ПИРОЛИЗ УГЛЕВОДОРОДНОГО СЫРЬЯ

Поиск Лекций

Под термическими процессами подразумевают процессы химических превращений углеводородного сырья – совокупности реакций крекинга (распада) и уплотнения, осуществляемые термически, т.е. без применения катализаторов.

Пиролиз - процесс термического превращения углеводородов (предпочтительно парафиновых) при быстром повышении температуры сырья до 750-900 °С (вплоть до 1200 °С при пиролизе метана) и низком давлении до 0,03-0,12 МПа за время реакции 0,1-0,3 с в присутствии перегретого водяного пара и следующим за этим мгновенным понижением температуры продуктов реакции (режим закалки - trempe) до 370-420 °С в течение 0,02-0,03 с. Семейство промышленных процессов пиролиза постоянно совершенствуется применительно к разнообразному сырью: от этана, сжиженных газов (пропана, бутана и др.), прямогонных бензинов 40-180 °С до тяжелого сырья - атмосферных 230-360 °С и вакуумных 370-470 “С газойлей (дистиллятов) и к разным требованиям для получаемых продуктов. За рубежом этот процесс носит название Steam Cracking (крекинг в присутствии водяного пара, паро-крекинг), который был реализован в США в 1941 г. Пиролиз - наиболее старый из процессов термического крекинга. Первые пиролизные установки в России еще в 70-х годах XIX в. позволяли пиролизом керосина (ранее нефть использовалась прежде всего для выделения керосина в качестве заправки светильников) получать светильный газ. Потом в жидких пиролизных фракциях обнаружили арены (бензол и толуол), и пиролизные установки строились прежде всего для получения бензола и толуола, из которого в период Первой мировой войны получали взрывчатое вещество - тринитротолуол.

 

В настоящее время термический крекинг применяется преимущественно как про­цесс термоподготовки дистиллятных видов сырья для установок кок­сования и производства термогазойля.

Применительно к тяжелым нефтяным остаткам промышленное значение в современной нефте­переработке имеет лишь разновидность этого процесса, получивший название висбрекинга, - процесс легкого крекинга с ограниченной глубиной термолиза, проводимый при пониженных давлениях (1,5 -3 МПа) и температуре с целевым назначением снижения вязкости котельного топлива.

 

 

Коксование - длительный процесс термолиза тяжелых остатков или ароматизированных высококипящих дистиллятов при не высоком давлении и температурах 470 - 540 °С. Основное целевое назначение коксования - производство нефтяных коксов различных марок в зависимости от качества перерабатываемого сырья. Побочные продукты коксования — малоценный газ, бензины низкого качества и газойли.

Пиролиз - высокотемпературный (750 - 800 °С) термолиз га зообразного, легкого или среднедистиллятного углеводородного сырья, проводимый при низком давлении и исключительно малой продолжительности. Основным целевым назначением пиролиза является производство олефинсодержащих газов. В качестве побочного продукта при пиролизе получают высокоароматизированную жидкость широкого фракционного состава с большим содержанием непредельных углеводородов.

Процесс получения технического углерода (сажи) - исключительно высокотемпературный (свыше 1200 °С) термолиз тяжелого высокоароматизированного дистиллятного сырья, проводимый при низком давлении и малой продолжительности. Этот процесс можно рассматривать как жесткий пиролиз, направленный не на получение олефинсодержащих газов, а на производство твердого высокодисперсного углерода - продукта глубокого термического разложения углеводородного сырья по существу на составляющие элементы.

Процесс получения нефтяных пеков (пекование) - новый внедряемый в отечественную нефтепереработку процесс термолиза (карбонизации) тяжелого дистиллятного или остаточного сырья, проводимый при пониженном давлении, умеренной температуре (360—420 °С) и длительной продолжительности. Помимо целевого продукта - пека- в процессе получают газы и керосино-газойлевые фракции. в основе процессов термолиза нефтяного сырья лежат реакции крекинга (распада) и поликонденсации (синтеза), протекающие через ряд промежуточных стадий по радикально-цепному механизму;

В реакциях крекинга ведущими являются короткоживущие радикалы алкильного типа, а поликонденсации - долгоживущие бензильные или фенильные радикалы.

Свойства и реакции радикалов. Радикалы, имеющие неспаренные (свободные) электроны, образуются при гемолитическом распа­де углеводородов преимущественно путем разрыва менее прочной С-С-связи: С2Н6 —> 2 ∙СН3, а также С-Н-связи: С6 Н6 -> Н- +С2Н5.

Гемолитический распад молекул энергетически значительно выгоднее, чем гетеролитический с образованием заряженных ионов.

Радикалы, являясь химически ненасыщенными частицами, обладают исключительно высокой реакционной способностью и мгновенно вступают в различные реакции.

Радикалы высокой молекулярной массы термически малостабильны и распадаются с образованием низкомолекулярного более устойчивого радикала, в том числе водородного:

При термолизе протекают следующие типы реакций радикалов.

1. Мономолекулярные реакции распада могут быть двух типов с образованием:

1) монорадикала и молекулы с двойной связью или

2)бирадикала:

Из двух типов реакций энергетически более выгоден распад 1 типа. Бирадикалы при дальнейшем распаде образуют только молекулы с двойной связью и далее не участвуют в цепных реакциях термолиза.

Распад радикалов с образованием водородного радикала энергетически менее выгоден, чем образование алкильного радикала.

Если распад радикала возможен по двум путям с образованием в обоих случаях олефина и алкильного радикала, то энергетически более выгоден распад с образованием большего радикала. С перемещением свободной валентности ближе к центру радикала возрастает энергия, необходимая для его распада.

Наиболее вероятные направления радикалов те, которые требуют наименьшей энергии активации. Легче всего происходит распад С-С -связи в (3-положении к углероду, имеющему неспаренный электрон.

При распаде алкильных радикалов энергетически значительно выгоднее образование алкадиенов и водородного радикала

СН2=СНСН2 —> СН2=С=СН2+Н-,

чем образование бирадикала СН2=СН-СН2 -» -СН2- + СН2=СН.

Распад нафтенового радикала с наибольшей скоростью проходит с раскрытием кольца, а не с отрывом водорода с кольца.

Бензильные радикалы малоактивны в реакциях распада, они склонны главным образом к реакциям рекомбинации и поликонденсации.

Реакции изомеризации. В процессах термолиза углеводородов могут происходить, кроме распада, и реакции структурной и скелетной изомеризации радикалов:

Реакции замещения представляют собой по существу обмен атомом водорода между радикалом (Н-, СН3 и С2Н5) (присоединяет) и молекулой углеводорода (отдает):

Реакции присоединенияимеют место при взаимодействии радикала с молекулой, имеющей двойную (то есть 71) связь:

R- + СН2=СН-R' -» R-СН2-СН-R’ (например, С2Н5 + С2Н4 -» С4Н9) .

Реакция рекомбинации обратна реакции мономолекулярного распада молекулы на радикалы:

R- + R-‘ -> RR’

(например, СН3 +С2Н5 -> С3Н8).

Реакция диспропорционирования радикалов является обратной (обратимой) по отношению к реакции бимолекулярного их образования:

СН3 + С2Н5 -> СН4+ С2Н4, или 2С2Н5 -» С2Н4+ С2Н6.

Цепные реакции. Первичной реакцией термолиза нефтяного сырья является образование первичного радикала в результате мономолекулярного распада или бимолекулярного взаимодействия молекул углеводородов.

Концентрация радикалов в реакционной системе обычно невелика, и вероятность их столкновения между собой ничтожно мала. При термолизе более значительно преобладают взаимодействия между радикалом и молекулами исходного сырья. Поскольку радикал имеет свободный неспаренный электрон, то его реакция с молекулами, все электроны которых спарены, должна в силу принципа неуничтожимости свободной валентности привести к образованию нового вторичного радикала. Если последний не является малоактивным, то он, в свою очередь, вступит в реакцию с новой молекулой сырья и т.д. Так как число радикалов, могущих образоваться при термолизе, велико, на некоторой стадии образуется радикал, принимавший участие в одной из предыдущих стадий, и возникает регулярное чередование двух или более последовательно параллельных элементарных реакций с образованием конечных продуктов. Этот процесс продолжится до тех пор, пока радикал не «погибнет» в результате реакций рекомбинации или диспропорционирования. Реакции такого типа называются цепными.

Первичная элементарная реакция с образованием первичного радикала из молекул сырья называется реакцией инициирования цепи. Реакции превращения одних радикалов в другие, при которых расходуется сырье, называются реакциями продолжения цепи. Реакции, при которых радикалы гибнут, превращаясь в стабильные молекулы в результате рекомбинации, диспропорционирования или образования малоактивного радикала, называются реакциями обрыва цепи. Обрыв цепи может произойти также при добавлении или присутствии в сырье веществ - ингибиторов, которые приводят к замене активных радикалов на малоактивные, не способные к продолжению цепи.

Совокупность элементарных реакций продолжения цепи, повторение которых дает цепной процесс, называют звеном цепи. В результате реакций обрыва цепи на каждый радикал, инициирующий цепной процесс, приходится некоторое конечное число звеньев, называемое длиной цепи.

Рассмотрим в качестве иллюстрации термический распад нормального пентана.

Инициирование цепи:

Кроме невыраженных явно выше реакций, в процессе термолиза пентана протекают также реакции изомеризации, циклизации и далее поликонденсации с образованием высокомолекулярных аро­матизированных продуктов.

Разветвленные цепные реакции - разновидность цепных реакций, в которых превращение активных промежуточных продук­тов приводит к увеличению числа свободных радикалов. Напримёр, одной из элементарных стадий окисления водорода является реакция

Н-+О2 -» ОН+-О.

В этой реакции вместо одной свободной валентности у атома водорода образуются три новые свободные валентности - одна у гидроксила и две (то есть бирадикал) у атома кислорода. Последующая реакция бирадикала кислорода с молекулой водорода приводит к образованию двух новых свободных монорадикалов:

•О- + Н2 -» ОН + Н-.

Таким образом, одна цепь как бы разветвляется на три, откуда и происходит термин «разветвление». Примером такого механизма разветвления цепей являются, кроме горения водорода, реакции с участием перекисей углеводородов, например, детонационное горение автобензинов.

Пиролиз нефтяного сырья

На российских заводах имеется достаточное число установок пиролиза прямогонной бензиновой фракции (например, в городах Кстово в Нижегородской области, Волгограде), основная цель которых - получение углеводородного газа с высоким содержанием непредельных углеводородов. Из газа пиролиза получают (% мае.): этилен чистотой 99,9, пропилен чистотой 99,9, бутан-бутадиеновую фракцию, содержащую 30—40 бутадиена, 25—30 изобутилена и 15—30 н-бутилена. Эти газы используются в нефтехимической промышленности. Наряду с газом в процес­се образуется жидкий продукт (смола пиролиза), содержащий моноциклические и полициклические ароматические углеводороды. Основные направления использования жидких продуктов пиролиза - получение бензола и других ароматических углево­дородов как компонента автомобильных бензинов, нефтеполимерных смол, котельных топлив. Также смола пиролиза является сырьем для производства технического углерода, пеков и высо­кокачественных коксов.

Сырьем в процессах пиролиза служат газообразные и жидкие углеводороды: газы, легкие бензиновые фракции, газовые конденсаты, рафинаты каталитического риформинга и реже керосино-газойлевые фракции.

От сырья и технологического режима пиролиза зависят выходы продуктов. Наибольший выход этилена получается при пиролизе этана. По мере утяжеления сырья выход этилена снижается и увеличивается выход жидких продуктов - смол пиролиза.

На рис. показана технологическая схема установки пиролиза бензина и газообразного сырья.

Бензин II подают под давлением 1 -1,2 МПа в паровой подогреватель 7, затем он подогревается дымовыми газами в трубах конвекционной секции печи 2 и смешивается с водяным паром I. Эта смесь поступает в трубы радиантной части змеевика печи 2. Подвергаемый пиролизу углеводородный газ III поступает в печь пиролиза без подогрева.

Реакционную смесь выводят из печи при температуре 840 -850 °С и во избежание полимеризации непредельных углеводородов подвергают быстрому охлаждению в «закалочном» аппарате 3. Последний представляет собой конденсатор смешения, куда распыляют водный конденсат. За счет теплоты испарения конденсата температура реакционной смеси снижается примерно до 700 °С. Охлаждения до этой температуры достаточно, чтобы за несколько секунд пребывания реакционной смеси на участке от «закалочного» аппарата до котла-утилизатора 5 не допустить развития в них побочных реакций. Последующее снижение температуры до 400 °С происходит в котле-утилизаторе 5, где тепло газов пиролиза используется для производства водяного пара высокого давления.

Парогазовую смесь из аппаратов 5 смешивают и направляют в колонну 8. В нижней части колонны поток отмывают от сажи и кокса тяжелым поглотительным маслом VI. Верх колонн орошается легким поглотительным маслом V, также получаемым на самой установке. В нижней части колонны конденсируется наиболее тяжелая часть смолы. Часть смолы откачивают насосом 6 и через фильтр 9 возвращают в нижнюю часть колонны 8 в качестве тяжелого поглотительного масла VI, а оставшуюся часть выводят

 

Рис. Схема установки пиролиза бензина: 1 - паровой подогреватель; 2 - печь; 3 - закалочный аппарат; 4 - пароперегреватель; 5 - котел-утилизатор; 6 - насос; 7 - паросборник; 8 - колонна первичной ректификации; 9 - фильтр; 10 - холодильник-конденсатор; 11 - отпарная колонна; 12 - отстойник; 13 - сепаратор;

1 - водяной пар; II - бензин; III - углеводородный газ; IV - вода; V - легкое масло; VI - тяжелое масло; VII - вода на очистку; VIII - газ пиролиза на очистку; IX - топливный газ; X - дымовые газы/

.

Облегченная парогазовая смесь из верхней части колон­ны 8 проходит холодильник-конденсатор 10, охладившись до температуры 30—35 0C, разделяется в сепараторе 13 на газ пиролиза VIII, направляемый на компрессию и далее на газоразделение, и обводненный конденсат легкого масла V, которое отделяют от воды VII в отстойнике 12. Легкое масло V частично подают в верхнюю часть колонны 8, а другую его часть по­сле отпаривания в колонне 11 откачивают с установки.

Для переработки тяжелого дистиллятного сырья (вакуумный газойль) требуется более мягкий режим пиролиза и специальные меры, направленные на увеличение времени работы до ремонта печи. Так, в практику эксплуатации промышленных установок введена поочередная очистка от кокса одного или нескольких змеевиков печи: из них удаляют сырье и газифицируют образо­вавшийся на стенках труб кокс водяным паром. При этом про­должительность межремонтного пробега увеличивается до шести месяцев.

Основные трудности, связанные с промышленным оформле­нием пиролиза:

-необходимость четкого регулирования продолжительности реакции, которая при высоких температурах составляет обычно доли секунды;

-отложение кокса и сажи в реакционной зоне, необходимость быстрого охлаждения газа пиролиза в «закалочном» аппарате;

-необходимость применения жароупорных сталей для изготовления труб змеевиков печей;

-ограничение производительности установки вследствие значительного удельного объема реакционной смеси, обусловленного высокой температурой и разбавлением сырья водяным паром. Последнее заставляет иметь на установках несколько печей.

Совершенствование конструкций трубчатых печей за последние годы позволило снизить время пребывания сырья с 2 до 0,25—0,40 с и повысить температуру до 840—870 °С.

Для увеличения поверхности труб, приходящейся на единицу реакционного объема, печи делают многопоточными (с 4—6 па­раллельными потоками). Длина реакционного змеевика должна обеспечить завершение реакции за короткий промежуток времени.

 

 

Литература

Ахметов и др. Технология и оборудование процессов переработки нефти и газа (2006).

poisk-ru.ru

Что такое пиролиз? Определение, понятие о процессе

Что такое пиролиз? Какое значение он имеет для современной химической промышленности? Будем вместе разбираться в данном вопросе.

О пиролизе углеводородов

Итак, что такое пиролиз? Определение данного процесса предполагает термическое разложение органического соединения без наличия кислорода. Подвергаются такому распаду нефтепродукты, уголь, древесина. После завершения процесса образуется синтез-газ, а также другие конечные продукты.

что такое пиролиз

Особенности процесса

Реакция пиролиза осуществляется при температуре от 800 до 900 градусов. Именно этот процесс считают основным вариантом образования этилена. Данный непредельный углеводород является важным исходным сырьем для получения разнообразных органических соединений: бензола, дивинила, пропилена.

Пиролиз древесины

Рассуждая над тем, что такое пиролиз, отметим, что впервые эта химическая технология переработки нефтегазового сырья была запатентована А. А. Летним в 1877 году. Что такое пиролиз древесины? Эта реакция осуществляется при температуре порядка 500 градусов. Она связана с образованием таких важных компонентов химического производства, как уксусная кислота, древесный уголь, смола, ацетон. Учитывая, что наша страна является «кладовой» лесов, в России функционируют крупные комбинаты по проведению процесса пиролиза древесины.

Пиролиз мусора

Пиролиз отходов является специальным проектом, связанным с уничтожением бытового мусора. Сложность проведения пиролиза пластмасс, шин, разнообразных органических отходов связана с тем, что предполагается иная технология, существенно отличающаяся от процесса переработки иных твердых материалов.

что это определение пиролиза

В составе многих отходов есть сера, хлор, фосфор, которые после окисления (образования оксидов) приобретают свойства летучести. Продукты пиролиза представляют угрозу для окружающей среды.

При взаимодействии хлора с органическими веществами, образующимися после завершения процесса разложения, происходит выброс прочных ядовитых соединений, таких как диоксины. Для того чтобы улавливать подобные продукты из выделяющегося дыма, необходима специальная установка пиролиза. Подобная процедура предполагает существенные материальные затраты.

Для европейских стран большое экологическое значение имеет проблема утилизации старых автомобильных шин, резиновых деталей, которые отработали свой эксплуатационный срок. В связи с тем что природное нефтяное сырье является невосполнимым видом полезных ископаемых, необходимо применять в максимальном объеме вторичные ресурсы.

Из бытового и строительного мусора можно получать огромное количество разнообразных веществ органического и неорганического состава, поэтому так важно развивать данное промышленное направление.

что такое пиролиз определение

Полимеры и автомобильные шины являются отличным ценным сырьем. После его переработки путем низкотемпературного пиролиза можно получать жидкие фракции насыщенных углеводородов (синтетическую нефть), горючий газ, углеродистый остаток, а также металлический корд. При сжигании тонны резиновых шин происходит выделение в атмосферу порядка 270 кг сажи, а также около 450 кг токсичных газообразных веществ.

Синтез-газ

Это смесь водорода и оксида углерода (2). В промышленных объемах ее получают при проведении паровой конверсии метана, газификации угля, окислении метана, переработке органических отходов. В зависимости от того, по какой технологии получают синтез-газ, соотношение в нем угарного газа и водорода может варьироваться в диапазоне от 1:1 до 1:3.

Среди основных областей применения данного сырья особое место занимает изготовление метанола, а также синтез Фишера-Тропша. Под ним понимают химическую реакцию, которая происходит при наличии катализатора. Заключается она в преобразовании угарного газа и водорода в разнообразные жидкие углеводороды. В основном в качестве катализаторов (ускорителей) данного взаимодействия выбирают кобальт и железо.

продукты пиролиза

Специфичность данного процесса в возможности производства синтетических материалов для применения их в виде смазочного синтетического масла либо топлива.

Специфика получения

Как выглядит химизм реакции? Попробуем выяснить, что это. Определение пиролиза было рассмотрено выше, теперь остановимся на особенностях химического процесса. Способ Фишера-Тропша подразумевает взаимодействие метана с кислородом. Продуктами взаимодействия являются угарный газ и водород. В результате реакции получаем углеводороды ряда алканов и водяной пар. Именно образующиеся углеводородные продукты после очистки используют для создания синтетической нефти.

Значение пиролиза

Угарный газ и газообразный водород образуются при частичном окислении древесного топлива и каменного угля. Значимость подобного процесса заключается в образовании из твердого сырья (углеводородных отходов либо угля) водорода или жидких углеводородов.

При неокислительном пиролизе твердых отходов в настоящее время в химической промышленности производят синтез-газ. Некоторое его количество применяют и в виде автомобильного топлива, не подвергая последующей переработке по реакции Фишера-Тропша. При необходимости использования жидкого топлива аналогичного парафинам и смазке применяется упрощенная химическая технология.

установка пиролиза

Если нужно увеличить количество выпускаемого водорода, с помощью изменения объема водяного пара смещают в данном уравнении химическое равновесие. В таком случае после завершения взаимодействия образуется водород и углекислый газ.

Совершенствование технологии

После открытия, сделанного в 1920 году немецкими исследователями Гансом Тропшом и Францем Фишером, технология неоднократно модернизировалась, совершенствовалась. Постепенно количество синтетического топлива, созданного путем пиролиза, достигло в Германии 124 тысяч баррелей за сутки. Такой показатель существовал в 1944 году.

Современность

В наше время существуют две крупные компании, которые применяют в своей технологии процесс Фишера-Тропша. Большая часть дизельного топлива ЮАР производится путем пиролиза, последующего окисления образующих продуктов.

Особое внимание данная химическая технология приобрела после того, как ученые стали искать способы получения дизельных малосернистых веществ, способных наносить минимальный ущерб окружающей среде. Например, американские компании в настоящее время в качестве исходного сырья выбирают кокс или уголь, получая жидкие углеводороды высокого качества.

реакция пиролиза

Несмотря на то что процесс пиролиза является проработанной технологией, которую можно использовать в крупных масштабах, он связан с довольно высокими материальными затратами на ремонт и эксплуатацию установки. Для многих производителей это является сдерживающим фактором, ведь наблюдается тенденция снижения мировых цен на нефть.

Заключение

Мировые запасы каменного угля достаточно велики. Они могут быть использованы в виде источника топлива в связи с существенным истощением нефти. Аналитики, занимающиеся нефтегазовой отраслью, убеждены, что именно путем пиролиза можно производить качественные углеводороды. Они отмечают, что получаемое топливо не только имеет более высокие экологические показатели по сравнению с нефтяным топливом, но и вполне приемлемо для потребителей по ценовому диапазону. В случае сочетания синтеза Фишера-Тропша и газификации биомассы можно вести речь о перспективном способе изготовления возобновляемого варианта автомобильного топлива.

пиролиз отходов

Синтетическое сырье, получаемое путем пиролиза угля, является конкурентоспособным только при стоимости нефти больше 40 долларов за баррель. Для производства подобной смеси углеводородов необходимы инвестиции в диапазоне от семи до девяти миллиардов долларов за восемьдесят тысяч баррелей синтетического топлива. Технологии, связанные с процессом пиролиза, признаны у экологов одними из самых безопасных для окружающей среды. Именно поэтому в последнее время многие развитые страны уделяют большое внимание разработке новых способов получения углеводородного топлива, которое бы позволило им отойти от традиционного нефтяного сырья. Благодаря инновациям и совершенствованию технологической цепочки процесс пиролиза стал существенно дешевле и доступнее для получения качественных жидких углеводородов. Образованные продукты применяют не только в качестве топлива, но и для создания разнообразных органических веществ.

fb.ru

Пиролиз реакции - Справочник химика 21

    Пиролиз — реакция, при которой соединение подвергается термическому разложению без доступа воздуха (и обычно при пониженном давлении) с образованием одного или нескольких продуктов. Примером пиролиза может служить термическое разложение угля. Иногда вместо пиролиза употребляется термин сухая перегонка (в случае разложения каменного угля используется также термин карбонизация ). [c.109]

    Пиролиз — процесс высокотемпературного термического разложения углеводородного сырья. Термическое разложение углеводородов можно представить как ряд последовательно и параллельно протекающих химических реакций, в результате которых образуется большое число продуктов. На первой стадии идут первичные реакции расщепления алканов и циклоалканов, на второй — образовавшиеся алкены и диены подвергаются реакциям дегидрирования, дальнейшего расщепления и конденсации с образованием циклических ненасыщенных и ароматических углеводородов. При этом первичные реакции термического разложения исходных веществ можно рассматривать как реакции первого порядка. В условиях пиролиза реакции разложения углеводородов осуществляЕотся в газовой фазе через образование свободных радикалов по моно- и бимолекулярному механизмам. С участием радикалов имеют место реакции замещения, присоединения, раснада, изомеризации, рекомбинации и диспропорционирования. [c.802]

    Пиролиз осуществляется при низком давлении и температуре, значительно превосходящей температуру крекинга, а именно, при 700° и выше. При такой температуре термические реакции идут с большой скоростью, за короткое время достигается значительная глубина превращения сырья и образуется большое количество продуктов вторичных реакций. Если во время крекинга при низком давлении преимущественно наблюдается распад тяжелых углеводородных молекул, а влияние реакций синтеза относительно невелико, то при пиролизе реакции синтеза приобретают столь важное значение, что ими в основном и определяется состав конечных продуктов.. [c.231]

    Процесс полимеризации газообразных олефинов под влиянием фосфорной кислоты протекает наиболее легко с бутиленами, особенно с изобутиленом пропилен полимеризуется значительно труднее, наиболее же трудно протекает полимеризация этилена. Со смесью олефинов, находящихся в газах крекинга и пиролиза, реакцию полимеризации удобно проводить, пуская газ через стальную трубку с катализатором на носителе при температуре 230—250° и давлении 7—12 ат полезная длина трубки 60—65 см ее диаметр 2,5—4 см. Получаемые этим путем полимерные бензины — весьма высокого качества. До 150° они выкипают в количестве 60—70 %, до 200°—в количестве 80—90 %. Их октановое число-78—82. По составу они почти целиком состоят из непредельных углеводородов, а стабилизация их лучше всего достигается путем легкого гидрирования (гидроочистка). [c.782]

    Полученное различие в составах газообразных продуктов и выходах олефинов объясняется наличием каталитического эффекта, а также присутствием катализатора, значительно увеличивающего поверхность контакта. Вместе с тем распределение продуктов указывает на то, что в присутствии цеолитсодержащего катализатора изменяется механизм протекающих реакций. Если при гомогенном пиролизе реакции протекают по радикально-цепному механизму (рассмотренному в работах Ф.О.Райса, Ю.П.Ямпольского и др.), то в присутствии цеолитсодержащего катализатора, по-видимому, начинают играть свою роль реакции, протекающие по карбоний-ионному механизму с участием активных центров катализатора, о чем свидетельствуют высокие выходы пропилена. [c.10]

    Несовпадение расчетных и экспериментальных составов по водороду и по ацетилену и этилену можно объяснить отсутствием в условиях плазмоструйного пиролиза реакций гидрирования. Нами были проведены также термодинамические расчеты квазиравновесных составов продуктов разложения углеводородов с соотношением [c.114]

    Н. Д. Зелинскому, А. Ф. Добрянскому, С. В. Лебедеву, Н. А. Бут-кову и многим другим. Их усилиями был разъяснен смысл происходящих при пиролизе реакций и организовано промышленное получение ароматических углеводородов из нефти. [c.233]

    Одним из направлений развития процесса пиролиза является гидропиролиз, представляющий собой коксование угля в среде водорода. В этом процессе на стадии выделения летучих веществ протекают реакции между образующимися свободными радикалами и водородом, что позволяет сдвинуть равновесие между основными, характерными для пиролиза, реакциями— полимеризацией и крекингом — в сторону последнего. Количество выделяющихся летучих веществ в присутствии водорода существенно выше, чем в среде инертного газа. В процессе гидропиролиза при температурах выше 500°С и давлении около 14 МПа может быть превращено в жидкие продукты свыше 70% угля, вдуваемого в реактор в пылевидной форме. Остальная часть угля превращается в газообразные углеводороды, которые могут служить источником получения родорода. [c.71]

    Классический метод получения олефинов из аминов состоит в предварительном получении из них четвертичных аммониевых солей с последующим пиролизом (реакция Гофмана, 1881) [О. R., 11, 317]. Этот метод позволяет получать напряженные структуры. [c.181]

    Пиролиз — реакция, при которой соединение подвергается термическому разложению (часто при пониженном давлении) с образованием одного или нескольких продуктов в результате расщепления углерод-углеродных связей, изомеризации и т. п. [c.14]

    Повышение дав.ления до 200 атм. позволяет снизить температуру образования жидких нродуктов до 370—450°. Однако характер процесса и образующихся продуктов при этом претерпевает изменение. Доминирующие при пиролизе реакции распада при этом вытесняются процессами полимеризации, о которых речь будет идти в следующем разделе. [c.419]

    Этим методом работает одна установка в Англии, которая перерабатывает 50 ООО т лигроина в год. Продукты пиролиза используют для получе- ия химикалий. Состав коночных продуктов зависит от исходного материала, температурных условий и времени реакции. При пиролизе парафиновых продуктов, как уже говорилось, образуется больше газа, а при пиролизе нафтенового сырья и ароматических масел — больше жидких продуктов реакции с очень малым содержанием серы. Потери, обусловленные главным образом коксообразопанием, составляют примерно 1%. Пря пиролизе реакции крекирования протекают очень быстро, а ароматизация требует большего времени. Это влпяет на технологию процесса. ]1оэтому сум,марная иагрузка при катарол-процессе составляет лишь 0,3—0,4 объема жидкого реакционного продукта на 1 объем реакционной емкости в час при нахождении сырья в зоне нагрева в течение 30—60 сек. [c.116]

    Таким образом, механизм окислительного разложения принципиально отличается от механизма пиролиза полимеров в отсутствие кислорода. Если при пиролизе реакция протекает как простой цепной процесс, то участие кислорода обусловливает инициирование разветвленной цепной реакции. Кроме того, простая (неразветвленная) цепная реакция продолжительное время может протекать в стационарном режиме практически с постоянной скоростью. Степень превращения при этом пропорциональна времени. Разветвленная же цепная реакция имеет автокатали-тнческий характер и протекает с ускорением до больших глубин превращения. Одним из вал пейших признаков так1[х реакций являются критические эффекты — резкое увеличение скорости реакции при достижении некоторого предельного значения одного из параметров определяющих скорость реакции [100, 101]. Такими параметрами могут быть концентрации реагентов, размеры образца (реакционного сосуда), температура и др. [c.80]

    Хлорофилл Ь отличается от хлорофилла а тем, что содержит в положении 3 вместо метильной группы формильную (см. стр. 166). В отличие от хлорофилла а хлорофилл 6 при фазовой пробе дает красно-коричневую окраску. При его пиролизе, реакции фазовой пробы и омылении получается ряд веществ, аналогичных веществам, получаемым для хлорофилла а, — форбнды 6 и родины, соответствующие форбидам а и хлоринам. [c.177]

    Этот тип реакций может быть выражен приведенной ниже схемой, где в качестве X может фигурировать ряд функциональных групп, в большинстве случаев полиатомных. Реакция, очевидно, интрамоле-кулярна и идет в условиях пиролиза. Реакция Чугаева, вероятно, наиболее изученный пример превращений этого типа. Не осложнен- [c.314]

    Берг и Слота [26] разработали метод приготовления диалкилфосфино-боранов с использованием более доступных исходных веществ, чем фосфины и диборан. Метод заключается в обработке двузамещенных органических производных тригалогенидов фосфора борогидридом натрия в диглиме с последующим пиролизом [реакция (7)]  [c.140]

chem21.info


Смотрите также