Что такое буровая платформа? Виды буровых платформ. Платформы для добычи нефти


Нефтяные платформы для добычи иссякающих запасов нефти

СодержаниеСвернуть

Плавучие острова из стали с размером в 20 — этажный дом осуществляют работу над водой на 1,5 – километровой глубине по всем океанам. Скважины бурятся протяженностью до десяти километров для того, чтобы найти «сокровища» благодаря самым современным технологиям. Работа на нефтяных платформах считается очень престижной. Для круглосуточного контроля необходимо 24 специалиста, а всю остальную работу делают различные аппараты. Они осуществляют извлечение нефти — сырца из камня, заодно отделяя природный газ. Избытки газа сжигаются.

Типы морских платформ

Одно месторождение в море способно выдавать в день 250 тыс. нефтяных баррелей. Этого вполне хватит для наполнения бензобаков 2.5 млн. автомобилей. Но это только незначительная часть потребностей рынка. Ведь каждый день на планете сжигается 60-80 млн. баррелей. И если ситуация останется прежней, то в ближайшие пятьдесят лет потребность в энергетических ресурсах вырастет в два раза.

Морские платформы бывают следующих видов:

— стационарная;— морская, которая свободно закреплена ко дну;— полупогружная буровая;— морская передвижная с выдвижными опорными компонентами;— плавучее нефтяное хранилище (FSO), которое способно хранить нефть, а также выполнять ее отгрузку на побережье;— буровое судно;— плавучая установка (FPSO) для того, чтобы добывать, хранить и отгружать нефть;— платформа с растянутыми опорными компонентами.

На сегодня в мировом океане существует сто буровых платформ. На сооружение только одной из них уходит четыре года и 500 млн. долларов. При этом одна нефтяная платформа каждодневно добывает нефти на 4 млн. долларов.

Типы нефтяных платформ

Газодобывающие компании постоянно возводят все новые платформы. В Мексиканском заливе в 240 километров от побережья Луизианы, где морская глубина больше 1600 метров, находится гигантская плавучая буровая платформа, обозначающаяся как EVA – 4000. Она принадлежит компании «Ноубл Джим Томпсон».Это сооружение является наиболее крупной буровой платформой нового поколения. Она выполняет разведку в наиболее удаленных районах, там где разработка нефти когда-то считалось невыполнимой задачей.

Аварии на нефтяных платформах

Периодически на платформах, добывающих нефть, происходят аварии. Так, в 2005 г. ураган Катрина свирепствовал в Новом Орлеане, опустошив побережье Мексиканского залива. 20 тыс. нефтяников пришлось срочно эвакуировать с платформ. Вышина волн достигала 24-х метров, а скорость ветра достигала 274 километра в час. Два дня ураган крушил все, что можно в нефтеносных районах. Масштабы разрушений были огромны: больше пятидесяти буровых платформ были уничтожены или повреждены, многие из них сорвались с якорей. В результате стоимость нефти молниеносно выросла.

В 2000 году власти Бразилии соорудили в Атлантическом океане огромную платформу «Петробас-36». Каждый день она добывала 180 тыс. баррелей нефти, осуществляя работу на глубине до полутора километров. Но спустя год на ней случилась авария — произошла утечка газа из-под вентиля опорной колонны, что вызвало серию очень мощных взрывов.

Нефтяная платформа Петробас — 36

В итоге платформа сделала крен на тридцать градусов от поверхности океана. Одиннадцать нефтяников исчезли — их так и не удалось обнаружить. Спустя пять суток платформа «Петробас-36» ушла под воду на огромную глубину — 1400 м. Так было утрачено сооружение ценой 500 миллионов долларов. Тысячи нефтяных галлонов и газового топлива оказались в океане. Хотя перед тем, как платформа утонула, специалисты сумели закупорить скважину и предотвратить большую природную катастрофу.

Читайте так же:

Жестокие аварии сверхскоростных катеров

Как тонет судно. Вид от первого лица

Сентябрь, 10, 2016 477 0

Поделитесь с друзьями:

sea-man.org

Что такое буровая платформа? Виды буровых платформ

Добыча полезных ископаемых ведется с помощью специальных инженерных сооружений – буровых платформ. Они обеспечивают нужные условия для того, чтобы велись разработки. Буровая платформа может обустраиваться на разной глубине – это зависит от того, насколько глубоко залегают месторождения нефти и газа.

Бурение на суше

 буровая платформа

Нефть залегает не только на суше, но и в континентальном шлейфе, который окружен водой. Именно поэтому некоторые установки оснащаются специальными элементами, благодаря которым они держатся на воде. Такая буровая платформа – это монолитное сооружение, которое выступает как опора для остальных элементов. Монтаж конструкции выполняется в несколько этапов:

  • сначала бурится тестовая скважина, что нужно для определения нахождения месторождения; если есть перспектива разработки конкретной зоны, то выполняются дальнейшие работы;
  • подготавливается площадка для буровой установки: для этого окружающая территория максимально выравнивается;
  • заливается фундамент, особенно если вышка имеет большой вес;
  • на подготовленной основе собирается буровая башня и остальные ее элементы.

Методы определения месторождения

Буровые платформы – основные сооружения, на основе которых ведутся разработки нефти и газа как на суше, так и на воде. Строительство буровых платформ ведется только после того, как определено наличие нефти и газа в конкретном регионе. Для этого бурится скважина разными методами: вращательным, роторным, турбинным, объемным, винтовым и многими другими.

Наиболее распространен роторный метод: при его использовании внутрь породы проводится вращающееся долото. Популярность данной технологии объясняется возможностью бурения выдерживать значительные нагрузки в течение длительного времени.

Нагрузки на платформы

самоподъемные буровые платформы

Буровая платформа может быть самой разной по конструкции, но возводиться она должна грамотно, в первую очередь с учетом показателей безопасности. Если о них не позаботиться, последствия могут быть серьезными. Например, из-за неправильных расчетов установка может просто разрушиться, что приведет не только к потерям финансов, но и к гибели людей. Все нагрузки, которые действуют на установки, бывают:

  • Постоянными: под ними подразумевают силы, действующие на всем протяжении эксплуатации платформы. Это и вес самих конструкций над установкой, и сопротивление воды, если речь идет о морских платформах.
  • Временными: такие нагрузки воздействуют на конструкцию в определенных условиях. Только во время запуска установки наблюдается сильная вибрация.

В нашей стране разработаны разные виды буровых платформ. На сегодняшний день на российском шлейфе работают 8 стационарных добычных систем.

Надводные платформы

Нефть может залегать не только на суше, но и под толщей воды. Чтобы добывать ее в таких условиях, применяются буровые платформы, которые ставятся на плавучие сооружения. В качестве плавательных средств в этом случае используются понтоны, самоходные баржи – это зависит от специфических особенностей разработки нефти. Морские буровые платформы имеют определенные конструктивные особенности, поэтому могут держаться на воде. В зависимости от того, какова глубина залегания месторождения нефти или газа, используются разные буровые установки.

виды буровых платформ

Около 30% нефти добывается именно с морских месторождений, поэтому все чаще возводятся скважины именно на воде. Чаще всего делается это на мелководье с помощью фиксирования свай и установки на них платформ, вышек, нужного оборудования. Для бурения скважин на глубоководных участках используются плавучие платформы. В некоторых случаях выполняется сухое бурение скважин на воду, что целесообразно для неглубоких проемов до 80 м.

Плавучая платформа

Плавучие платформы устанавливаются на глубину 2-150 м и могут применяться в разных условиях. Такие конструкции могут быть компактных размеров и работать в небольших реках, а могут устанавливаться и в открытом море. Плавучая буровая платформа – это выгодное сооружение, так как даже при небольших размерах она может выкачать большой объем нефти или газа. А это дает возможность экономить на затратах на транспорт. Такая платформа проводит в море несколько дней, затем возвращается на базу, чтобы опустошить резервуары.

Стационарная платформа

стационарная морская буровая платформа

Стационарная морская буровая платформа представляет собой сооружение, которое состоит из верхнего строения и опорного основания. Оно фиксируется в грунте. Конструктивные особенности таких систем разные, поэтому выделяются следующие виды стационарных установок:

  • гравитационные: устойчивость этих сооружений обеспечивается собственным весом конструкции и весом принимаемого балласта;
  • свайные: они обретают устойчивость за счет забитых в грунт свай;
  • мачтовые: устойчивость этих конструкций обеспечивается оттяжками или нужным объемом плавучести.

В зависимости от того, на какой глубине ведутся разработки нефти и газа, все стационарные платформы делятся на несколько видов:

  • глубоководные на колоннах: основание таких установок соприкасается с дном акватории, а в качестве опор используются колонны;
  • мелководные платформы на колоннах: они имеют такое же строение, как и глубоководные системы;
  • конструкционный остров: такая платформа стоит на металлическом основании;
  • монопод - это мелководная платформа на одной опоре, выполняется в виде башенного типа и имеет вертикальные или наклонные стенки.

Именно на фиксированные платформы приходятся основные добывающие мощности, так как они более выгодны в экономическом плане и более просты в монтаже и эксплуатации. В упрощенном варианте такие установки имеют стальное каркасное основание, которое выступает как несущая конструкция. Но использовать стационарные платформы нужно с учетом статичности и глубины воды в районе бурения.

Установки, в которых основание выполнено из железобетона, укладываются на дно. Они не нуждаются в дополнительных креплениях. Такие системы применяются на мелководных месторождениях.

Буровая баржа

Разведочное бурение на море выполняется посредством мобильных установок следующих видов: самоподъемных, полупогружных, буровых судов и барж. Баржи применяются на мелководных месторождениях, причем существует несколько видов барж, которые могут работать на самой разной глубине: от 4 м до 5000 м.

плавучая буровая платформа

Буровая платформа в виде баржи используется на начальных этапах разработки месторождений, когда нужно бурить скважины на мелководье или защищенных участках. Такие установки применяются в устьях рек, озер, болот, каналов на глубине 2-5 м. Такие баржи в большинстве своем несамоходные, поэтому с их помощью нельзя проводить работы в открытом море.

Буровая баржа имеет три основных составляющих: подводный погружной понтон, который устанавливается на дно, надводную платформу с рабочей палубой и конструкцию, которая соединяет эти две части.

Самоподъемная платформа

Самоподъемные буровые платформы похожи на буровые баржи, но первые более модернизированные и совершенные. Они поднимаются на мачтах-домкратах, которые опираются на дно.

Конструктивно такие установки состоят из 3-5 опор с башмаками, которые опускаются и вдавливаются в дно на время проведения буровых работ. Такие конструкции могут ставиться на якоря, но опоры – более безопасный режим эксплуатации, так как корпус установки не касается поверхности воды. Самоподъемная плавучая платформа может работать на глубине до 150 м.

полупогружная нефтяная буровая платформа

Данный вид установки возвышается над поверхностью моря благодаря колоннам, которые опираются на грунт. Верхняя палуба понтона – это место, где монтируется необходимое технологическое оборудование. Все самоподъемные системы отличаются формой понтона, количеством опорных колонн, формой их сечения и конструктивными особенностями. В большинстве случаев понтон имеет треугольную, прямоугольную форму. Количество колонн – 3-4, но в ранних проектах системы создавались на 8 колоннах. Сама буровая вышка или располагается на верхней палубе, или выдвигается за корму.

Буровое судно

Эти буровые установки являются самоходными и не требуют буксировки на участок, где проводятся работы. Проектирование таких систем выполняется специально для установки на небольшой глубине, поэтому они не отличаются устойчивостью. Буровые суда используются при разведке нефти и газа на глубине 200-3000 м и глубже. На такое судно ставится буровая вышка, а бурение выполняется непосредственно через технологическое отверстие в самой палубе.

При этом судно оснащается всем необходимым оборудованием, чтобы можно было управлять им при любых погодных условиях. Якорная система позволяет обеспечить должный уровень устойчивости на воде. Добытая нефть после очищения хранится в специальных резервуарах в корпусе, а затем перегружается в грузовые танкеры.

Полупогружная установка

Полупогружная нефтяная буровая платформа – одна из популярных буровых установок на море, так как она может эксплуатироваться на глубине свыше 1500 м. Плавучие конструкции могут погружаться на значительную глубину. Установка дополнена вертикальными и наклонными раскосами и колоннами, которые обеспечивают устойчивость всего сооружения.

Верхний корпус таких систем – это жилые помещения, которые оборудованы по последнему слову техники и имеют нужные запасы. Популярность полупогружных установок объясняется разнообразными вариантами архитектурных решений. Они зависят от количества понтонов.

строительство буровых платформ

Полупогружные установки имеют 3 вида осадки: бурение, режим штормового отстоя и переход. Плавучесть системы обеспечивается опорами, которые к тому же позволяют установке сохранять вертикальное положение. Отметим, что работа на буровых платформах России оплачивается высоко, однако для этого нужно иметь не только соответствующее образование, но и большой опыт работы.

Выводы

Таким образом, буровая платформа – это модернизированная система разного типа, которая может бурить скважины на различной глубине. Конструкции широко применяются в нефте- и газодобывающей промышленности. Перед каждой установкой ставится конкретная задача, поэтому они отличаются и конструктивными особенностями, и функциональностью, и объемом переработки, и транспортировкой ресурсов.

fb.ru

платформа для добычи нефти — с русского на английский

См. также в других словарях:

  • Плавучая установка для добычи, хранения и отгрузки нефти — Портал «Нефть и газ» Плавучая установка для добычи, хранения и отгрузки нефти (англ. Floating Production, Storage and …   Википедия

  • Плавучая установка для добычи — Плавучая установка для добычи, хранения и отгрузки нефти Плавучая установка для добычи, хранения и отгрузки нефти (англ. Floating Production, Storage and Offloading (FPSO)) вид нефтепромысловой платформы, используемой при добыче нефти в открытом… …   Википедия

  • Платформа буровая стационарная — – сложный инженерный комплекс, прикрепленный к морскому дну сваями, и предназначенный для бурения скважин и добычи нефти и газа, залегающих под дном моря, океана либо иного водного пространства …   Нефтегазовая микроэнциклопедия

  • Стационарная нефтяная платформа — Нефтяная платформа P 51 у берегов Бразилии …   Википедия

  • Нефтяная платформа — У этого термина существуют и другие значения, см. Платформа. Нефтяная платформа …   Википедия

  • Плавучая установка для хранения и отгрузки нефти — Плавучая установка для добычи, хранения и отгрузки нефти (англ. Floating Production, Storage and Offloading (FPSO)) вид нефтепромысловой платформы, используемой при добыче нефти в открытом море. Нефть и газ поступют в установку с близлежащих… …   Википедия

  • Морская ледостойкая стационарная платформа «Приразломная» — в Печорском море, весна 2012 года …   Википедия

  • Нефтепромысловая платформа — Нефтяная платформа Нефтяная платформа в Северном море Загрузка нефти в …   Википедия

  • Геология нефти — Содержание 1 Миграция нефти 2 Нефтеносные породы и скопления нефти …   Википедия

  • Добыча нефти — (Extraction of oil) Понятие нефтедобыча, методы и технологии добычи нефти Добыча нефти, описание методов и технологий добычи нефти Содержание Термин «» в современном мировом лексиконе стал синонимом общепринятого словосочетания «черное золото». И …   Энциклопедия инвестора

  • Перепроизводство нефти в 1980-х годах — Номинальные (красная линия) и сопоставимые (зеленая линия) цены на нефть на мировом рынке с 1968 по 2006 гг.[ …   Википедия

translate.academic.ru

Ледостойкая плавучая морская платформа для добычи нефти и газа (варианты)

Изобретение относится к судостроению и касается создания нефтегазодобывающих плавучих морских платформ, работающих на шельфе в арктических ледовых условиях при интенсивном морском волнении. Корпус опорного основания имеет два участка по высоте: нижний, который полностью расположен под водой, и верхний, на который опирается надводное верхнее строение и который размещен пересекающим морскую поверхность в районе конструктивной ватерлинии, а также выше и ниже нее. Верхний участок имеет вид зауженного тела с диаметром, существенно меньшим диаметра нижнего участка. Общая протяженность указанного участка по высоте равна не менее суммы толщины ледовых образований данной акватории и, по меньшей мере, удвоенной высоте расчетной волны акватории. Корпус нижнего участка является водонепроницаемым и заполнен преимущественно воздухом. В нем расположено технологическое оборудование для добычи нефти и газа, и в его нижней части размещены устьевые заканчивания буровых стояков и стояков от добычных скважин. Внутри корпуса верхнего участка образованы шахты для пассажирского лифта, забора воздуха и отвода отработанных газов технологического оборудования для добычи нефти и газа и вентиляции нижнего участка. Корпус нижнего участка может быть выполнен разделенным перегородкой на верхнюю и нижнюю водонепроницаемые части с возможностью отделения верхней части корпуса от его нижней части с размещенными в пределах последней устьевыми заканчиваниями буровых стояков и стояков от добычных скважин. Технологическое оборудование для добычи нефти и газа размещено в верхней отделяемой части корпуса нижнего участка. Корпус нижнего участка имеет возможность заполнения его полостей инертным газом. Вокруг верхнего участка установлено ледоразрушающее устройство, размещенное в районе конструктивной ватерлинии. При втором варианте исполнения платформы верхний участок в районе конструктивной ватерлинии, выше и ниже нее имеет вид сужающегося вверх от сечения к сечению тела, наружная поверхность которого имеет наклон к вертикальной оси указанного корпуса. Изобретение для повышения эффективности эксплуатации платформы позволяет увеличить число размещаемых на ней добычных стояков с устьевыми заканчиваниями при наименьшей чувствительности к ледовым и волновым нагрузкам. 2 н. и 8 з.п. ф-лы, 2 ил.

 

Изобретение относится к области судостроения и касается вопросов создания плавучих морских платформ, предназначенных для эксплуатации при добыче нефти и газа на шельфе арктических морей в ледовых условиях и в условиях интенсивного морского волнения.

Известны основания для размещения технологического оборудования для освоения нефтегазовых месторождений на морском шельфе гравитационного типа, опоры типа ферм, полупогруженные буи, заякоренные суда (см. Носков Б.Д. «Сооружения континентального шельфа», М: АСВ, 2004, с.280).

Однако они имеют серьезные ограничения по эксплуатации в условиях морского волнения и при наличии ледовых образований.

Известна также плавучая полупогруженная платформа на натяжных опорах типа TLP - Tension Leg Platform, включающая надводное верхнее строение, расположенное на вертикальном опорном основании, имеющем корпус преимущественно цилиндрической формы с водопроницаемой подводной частью, размещенные в верхнем строении устьевые заканчивания, соединенные с буровыми стояками и со стояками от добычных скважин на дне. Технологическое оборудование для добычи нефти и газа, жилой блок и пост управления, размещенные в надводном верхнем строении.

При эксплуатации платформы в условиях воздействия льдов и в условиях интенсивного морского волнения участок корпуса опорного основания, на котором размещено надводное верхнее строение с технологическим оборудованием, в районе пересечения морской поверхности, то есть в районе его конструктивной ватерлинии (КВЛ), подвергается воздействию со стороны ледовых образований и морского волнения, которые в результате приводят к значительным изгибным нагрузкам на буровые стояки и стояки от добычных скважин на дне моря. Поэтому стремятся по возможности уменьшить поперечные параметры указанного участка корпуса для снижения усилий от действующих на него упомянутых внешних воздействий, что приводит к ограничению количества пропускаемых через этот участок корпуса опорного основания буровых стояков и стояков от добычных скважин на дне моря, которые соединяются с устьевыми заканчиваниями, расположенными выше КВЛ в надводном верхнем строении.

Задачей предлагаемого изобретения является создание плавучей морской платформы для добычи нефти и газа, позволяющей увеличить число размещаемых на ней добычных стояков с устьевыми заканчиваниями, одновременно обладающей наименьшей чувствительностью к ледовым и волновым нагрузкам, и в результате повышение эффективности эксплуатации такой морской платформы.

Это достигается тем, что у ледостойкой плавучей морской платформы для добычи нефти и газа, включающей надводное верхнее строение, установленное на вертикально расположенном полупогруженном в воду опорном основании, имеющем корпус преимущественно цилиндрической формы с конструктивной ватерлинией, натяжные опоры для фиксации платформы в заданном месте, устьевые заканчивания буровых стояков и стояков от добычных скважин, технологическое оборудование для добычи нефти и газа и расположенные в надводном верхнем строении пост управления и жилой блок, корпус опорного основания выполнен состоящим из двух участков по высоте, нижнего подводного участка, который полностью расположен под водой, и верхнего участка, на который опирается надводное верхнее строение и который размещен пересекающим морскую поверхность. Верхний участок в районе конструктивной ватерлинии, а также выше и ниже нее, выполнен в виде зауженного тела с диаметром, существенно меньшим диаметра нижнего подводного участка опорного основания, и с общей протяженностью по высоте, равной не менее суммы толщины ледовых образований данной акватории и, по меньшей мере, удвоенной высоте расчетной волны акватории. Корпус нижнего подводного участка опорного основания выполнен водонепроницаемым и заполнен преимущественно воздухом, при этом в нем расположены технологическое оборудование для добычи нефти и газа и размещенные преимущественно в его нижней части устьевые заканчивания буровых стояков и стояков от добычных скважин. Внутри корпуса верхнего участка опорного основания образованы шахты для пассажирского лифта, забора воздуха и отвода отработанных газов технологического оборудования для добычи нефти и газа и вентиляции нижнего подводного участка опорного основания.

При этом корпус нижнего подводного участка опорного основания выполнен разделенным перегородкой на верхнюю и нижнюю водонепроницаемые части с возможностью отделения верхней части корпуса от его нижней части с размещенными в пределах последней устьевыми заканчиваниями буровых стояков и стояков от добычных скважин.

Наряду с этим технологическое оборудование для добычи нефти и газа размещено в верхней отделяемой части корпуса нижнего подводного участка опорного основания.

Кроме того, корпус нижнего опорного основания выполнен с возможностью заполнения его полостей инертным газом.

Кроме того, вокруг верхнего участка корпуса опорного основания установлено ледоразрушающее устройство, размещенное в районе конструктивной ватерлинии.

Для достижения указанного технического результата ледостойкая плавучая морская платформа по второму варианту исполнения выполнена аналогично с первым вариантом за исключением того, что верхний участок корпуса опорного основания в районе конструктивной ватерлинии, а также выше и ниже нее, выполнен в виде сужающегося вверх от сечения к сечению тела, наружная поверхность которого имеет наклон к вертикальной оси указанного верхнего участка.

Выполнение верхнего участка опорного основания, пересекающего морскую поверхность, с уменьшенными поперечными габаритами обеспечивает снижение изгибных нагрузок на буровые и добычные стояки благодаря уменьшенным в этом случае величинам усилий, действующих на указанный участок опорного основания со стороны ледовых образований и морского волнения. При этом также уменьшается интенсивность качки платформы от действия морского волнения, негативно сказывающейся при эксплуатации платформы, что также приводит к снижению изгибных нагрузок на упомянутые стояки.

Высота указанного верхнего участка опорного основания, равная не менее суммы толщины ледовых образований данной акватории и, по меньшей мере, удвоенной высоты расчетной волны акватории, выбирается из условия максимальных возможных перемещений ледовых образований и волн в реальных условиях относительно этого участка. При этом под высотой расчетной волны акватории понимается высота волны с расчетной обеспеченностью в системе, равной 13%.

Расположение технологического оборудования для добычи нефти и газа в нижнем, расположенном под водой участке опорного основания, позволяет существенно увеличить число размещаемых на нижней части корпуса платформы устьевых заканчиваний, связанных с буровыми стояками и со стояками от добычных скважин на дне.

Выполнение корпуса нижнего подводного участка опорного основания с возможностью заполнения инертным газом обеспечивает взрывобезопасность эксплуатации оборудования платформы для добычи нефти и газа.

Выполнение верхнего участка корпуса опорного основания в районе конструктивной ватерлинии в виде сужающегося кверху тела позволяет уменьшить влияние нагрузок от движущихся ледовых образований за счет обеспечения более благоприятного режима разрушения льда на излом снизу вверх, а также снижения угловой качки платформы.

Сущность изобретения поясняется чертежами, где на фиг.1 представлен общий вид ледостойкой плавучей морской платформы для добычи нефти и газа по первому варианту исполнения, а на фиг.2 - по второму варианту исполнения.

Платформа (фиг.1) содержит вертикальное опорное основание, имеющее корпус преимущественно цилиндрической формы, выполненный в виде двух разных участков по высоте: нижнего 1 - полностью погруженного под воду и верхнего 2 - полупогруженного, на котором расположено надводное верхнее строение 3 с жилым блоком и с постом управления (на чертеже не показаны). Верхний участок 2 корпуса опорного основания расположен пересекающим морскую поверхность в районе КВЛ 4 платформы. Указанный участок 2 выполнен с существенно уменьшенной площадью поперечного сечения по сравнению с таковой нижнего участка 1, а его протяженность по высоте равна не менее суммы толщины ледовых образований данной акватории и, по меньшей мере, удвоенной высоте расчетной волны акватории.

Нижний подводный участок 1 корпуса опорного основания выполнен водонепроницаемым и может быть разделен по высоте на две водонепроницаемые части 5 и 6 с возможностью их отделения друг от друга. Их полости могут быть заполнены воздухом или, по мере необходимости, инертным газом. В корпусе нижнего подводного участка опорного основания размещено оборудование для добычи нефти и газа. Причем в пределах верхней его части 5 расположено добычное технологическое оборудование 7, а в пределах нижней части 6 водонепроницаемого корпуса 1 - устьевые заканчивания 8 буровых стояков и стояков от добычных скважин 9, которые закреплены на днище 10 корпуса опорного основания.

Платформа фиксируется в заданном месте добычи с помощью натяжных опор 11.

Кроме того, вокруг верхнего участка 2 корпуса опорного основания установлено ледоразрушающее устройство 12, которое размещено в районе КВЛ 4.

При этом внутри верхнего участка 2 опорного основания имеются шахта 13 для пассажирского лифта и шахта 14 для забора через него воздуха, необходимого для работы технологического оборудования и для отвода отработанных (выхлопных) газов от работающего оборудования.

Исполнение платформы во втором варианте (фиг.2) отличается от первого варианта (фиг.1) лишь тем, что верхний участок 2 корпуса опорного основания, на который опирается надводное верхнее строение 3 и который размещен пересекающим морскую поверхность, выполнен в районе КВЛ 4, а также выше и ниже нее, в виде сужающегося вверх от сечения к сечению тела, наружная поверхность которого имеет наклон 16 к вертикальной оси указанного корпуса.

Работа устройства заключается в том, что при наличии на акватории плавающих льдов, а также интенсивного морского волнения, полупогруженная часть 2 корпуса опорного основания испытывает и преодолевает сопротивление обтекающих его ледовых образований и морских волн. Это вызывает смещение платформы, ее угловую и вертикальную качку, что приводит к возникновению значительных изгибающих нагрузок на буровые и добычные стояки.

При уменьшенном поперечном сечении верхнего участка 2 корпуса опорного основания, пересекающего морскую поверхность, величина указанного сопротивления ледовым образованиям соответственно уменьшается. Также снижается сопротивление морскому волнению, поскольку улучшается режим обтекания упомянутой части корпуса опорного основания и снижается влияние морского волнения на платформу за счет уменьшения площади сечения КВЛ верхнего участка. В результате снижаются гидродинамические силы, действующие на корпус опорного основания, вследствие чего уменьшаются изгибные напряжения на стояках.

Благодаря выбору высоты верхнего участка 2 корпуса опорного основания, равной не менее суммы толщины ледовых образований в данной акватории и, по меньшей мере, удвоенной высоты расчетной волны акватории, интенсивное морское волнение и ледовые образования будут воздействовать только на упомянутый верхний участок корпуса опорного основания, что исключит влияние последних на верхнее строение и нижний участок опорного основания.

В варианте исполнения ледостойкой плавучей морской платформы, когда верхний участок корпуса опорного основания выполнен в виде сужающегося кверху тела, при взаимодействии движущихся ледовых образований с корпусом верхнего участка происходит наползание последних на наклонную поверхность корпуса указанного участка, что приводит к их более быстрому излому и разрушению.

Кроме того, при погружении платформы в процессе качки происходит увеличение ее водоизмещения, однако из-за наличия наклонной поверхности корпуса верхнего участка опорного основания одновременно происходит уменьшение площади сечения КВЛ. При всплытии же платформы, наоборот, водоизмещение уменьшается, а площадь сечения КВЛ верхнего участка увеличивается. Совместное влияние на корпус платформы двух, противоположным образом действующих процессов - изменения водоизмещения платформы и изменения площади сечения КВЛ верхнего участка, компенсируют влияние на него волнения, что приводит к снижению качки.

Предлагаемое конструктивное выполнение ледостойкой плавучей морской платформы, в результате которого обеспечивается возможность размещения в нижнем участке корпуса опорного основания большего числа буровых стояков и стояков от добычных скважин, существенно повышает эффективность ее эксплуатации. Одновременно платформа обладает низкой чувствительностью к ледовым и волновым нагрузкам, в результате чего снижаются изгибные усилия, испытываемые всеми стояками, и улучшаются условия работы платформы при интенсивном морском волнении и при воздействиях значительных ледовых образований.

1. Ледостойкая плавучая морская платформа для добычи нефти и газа, включающая надводное верхнее строение, установленное на вертикально расположенном полупогруженном в воду опорном основании, имеющем корпус преимущественно цилиндрической формы с конструктивной ватерлинией, натяжные опоры для фиксации платформы в заданном месте, устьевые заканчивания буровых стояков и стояков от добычных скважин, технологическое оборудование для добычи нефти и газа, и расположенные в надводном верхнем строении пост управления и жилой блок, отличающаяся тем, что корпус опорного основания состоит из двух участков по высоте, нижнего участка, который полностью расположен под водой, и верхнего участка, на который опирается надводное верхнее строение и который размещен пересекающим морскую поверхность, и в районе конструктивной ватерлинии, а также выше и ниже нее, выполнен в виде зауженного тела с диаметром, существенно меньшим диаметра нижнего подводного участка опорного основания, и с общей протяженностью по высоте, равной не менее суммы толщины ледовых образований данной акватории и, по меньшей мере, удвоенной высоте расчетной волны акватории, причем корпус нижнего подводного участка опорного основания выполнен водонепроницаемым и заполнен преимущественно воздухом, при этом в нем расположены технологическое оборудование для добычи нефти и газа и размещенные преимущественно в его нижней части устьевые заканчивания буровых стояков и стояков от добычных скважин, а внутри корпуса верхнего участка опорного основания образованы шахты для пассажирского лифта, забора воздуха и отвода отработанных газов технологического оборудования для добычи нефти и газа и вентиляции нижнего подводного участка опорного основания.

2. Ледостойкая плавучая морская платформа по п.1, отличающаяся тем, что корпус нижнего подводного участка опорного основания выполнен разделенным перегородкой на верхнюю и нижнюю водонепроницаемые части с возможностью отделения верхней части корпуса от его нижней части с размещенными в пределах последней устьевыми заканчиваниями буровых стояков и стояков от добычных скважин.

3. Ледостойкая плавучая морская платформа по п.2, отличающаяся тем, что технологическое оборудование для добычи нефти и газа размещено в верхней отделяемой части корпуса нижнего подводного участка опорного основания.

4. Ледостойкая плавучая морская платформа по п.1, отличающаяся тем, что нижний подводный участок корпуса опорного основания выполнен с возможностью заполнения его полостей инертным газом.

5. Ледостойкая плавучая морская платформа по п.1, отличающаяся тем, что вокруг верхнего участка корпуса опорного основания установлено ледоразрушающее устройство, размещенное в районе конструктивной ватерлинии.

6. Ледостойкая плавучая морская платформа для добычи нефти и газа, включающая надводное верхнее строение, установленное на вертикально расположенном полупогруженном в воду опорном основании, имеющем корпус преимущественно цилиндрической формы с конструктивной ватерлинией, натяжные опоры для фиксации платформы в заданном месте, устьевые заканчивания буровых стояков и стояков от добычных скважин, технологическое оборудование для добычи нефти и газа, и расположенные в надводном верхнем строении пост управления и жилой блок, отличающаяся тем, что корпус опорного основания состоит из двух участков по высоте, нижнего участка, который полностью расположен под водой, и верхнего участка, на который опирается надводное верхнее строение, который размещен пересекающим морскую поверхность, выполнен в виде зауженного тела с диаметром, существенно меньшим диаметра нижнего подводного участка опорного основания, и в районе конструктивной ватерлинии, а также выше и ниже нее, представляет собой сужающееся вверх от сечения к сечению тело, наружная поверхность которого имеет наклон к вертикальной оси указанного верхнего участка, причем корпус нижнего подводного участка опорного основания выполнен водонепроницаемым и заполнен преимущественно воздухом, при этом в нем расположены технологическое оборудование для добычи нефти и газа и размещенные преимущественно в его нижней части устьевые заканчивания буровых стояков и стояков от добычных скважин, а внутри корпуса верхнего участка опорного основания образованы шахты для пассажирского лифта, забора воздуха и отвода отработанных газов технологического оборудования для добычи нефти и газа и вентиляции нижнего подводного участка опорного основания.

7. Ледостойкая плавучая морская платформа по п.6, отличающаяся тем, что корпус нижнего подводного участка опорного основания выполнен разделенным перегородкой на верхнюю и нижнюю водонепроницаемые части с возможностью отделения верхней части корпуса от его нижней части с размещенными в пределах последней устьевыми заканчиваниями буровых стояков и стояков от добычных скважин.

8. Ледостойкая плавучая морская платформа по п.7, отличающаяся тем, что технологическое оборудование для добычи нефти и газа размещено в верхней отделяемой части корпуса нижнего подводного участка опорного основания.

9. Ледостойкая плавучая морская платформа по п.6, отличающаяся тем, что нижний подводный участок корпуса опорного основания выполнен с возможностью заполнения его полостей инертным газом.

10. Ледостойкая плавучая морская платформа по п.6, отличающаяся тем, что вокруг верхнего участка корпуса опорного основания установлено ледоразрушающее устройство, размещенное в районе конструктивной ватерлинии.

www.findpatent.ru

Виды и устройство буровых платформ

 

Для добычи полезных ископаемых необходимо применять специальные инженерные сооружения, которые будут обеспечивать нужные условия для ведения разработки. Причем сложность подобных объектов будет зависеть от глубины залегания сырья и сопутствующих факторов.

 

Буровая платформа используется для разработки месторождений нефти и газа, которые обычно залегают на больших глубинах и характеризуются сложными условиями для добычи. Но ценность этих ресурсов и их высокое стратегическое значение привели к тому, что даже самые сложные месторождения подлежат разработке.

Платформы для бурения на суше

Как известно, нефть может залегать не только на суше, но и в континентальном шлейфе, окруженном водой. Поэтому некоторые платформы приходится оснащать дополнительными элементами, которые бы позволяли им держаться на воде. С сухопутными объектами такие метаморфозы, к счастью, не случаются, так что процедура их монтажа будет значительно легче.

 

Платформа буровой установки представляет собой монолитное капитальное сооружение, которое служит в качестве опоры для всех других элементов. Процесс ее монтажа осуществляется в несколько этапов, которые можно охарактеризовать так:

 

  • •    Бурение тестовой скважины с целью разведывания месторождения. Только самые перспективные зоны будет целесообразно разрабатывать.
  • •    Далее подготавливают площадку для платформы. Для этого стараются максимально выровнять окружающую территорию, чтобы ничего не мешало установке.
  • •    После этого заливают фундамент, хотя иногда обходятся просто установкой опор, если суммарный вес вышки позволяет обойтись без капитального строительства.
  • •    Когда основа будет готова, сверху нее собирают буровую башню и все остальные элементы, которые участвуют в непосредственном процессе добычи.
  • •    На завершающем этапе проводится тестирование и сдача в эксплуатацию.

Как и в любом деле, в оборудовании стационарных буровых платформ необходимо в первую очередь заботиться о безопасности. Невыполнение этого условия повлечет самые серьезные последствия. Неправильные расчеты могут привести к разрушению объекта. Помимо больших денежных расходов это также может стать причиной травмирования или гибели людей. Если пострадает кто-то из персонала, тогда ответственный за строительство человек будет привлечен к уголовной ответственности.

Нагрузки, действующие на буровые платформы, можно классифицировать так:

 

  • •    Постоянные, к которым относятся силы, которые действуют в течение всего периода эксплуатации. Это в первую очередь масса всех металлоконструкций, находящихся над платформой. При проведении расчетов используют в основном только этот параметр. Для морских элементов еще актуально сопротивление воды.
  • •    Временные, которые действуют только при определенных условиях. Это вибрация, которая появляется только во время запуска бурильной установки.

Надводные платформы для бурения

Морские буровые платформы ввиду особенностей своей эксплуатации должны обладать специальной конструкцией, которая позволит им держаться на воде. Как правило, такими видами спецтехники выступают плавучие баржи, которые могут добывать нефть и сразу же закачивать ее в свои резервуары. После наполнения одного судна производится смена, и процесс повторяется снова. Это очень удобно с практической точки зрения, но при неаккуратных работах может приводить к попаданию нефти в воду.

 

Плавучая буровая платформа может работать с глубинами от 2-х до 150-ти метров, так что разные виды рассчитаны на работу в разных условиях. Одни баржи имеют миниатюрные размеры и могут работать в реках, где пространство для маневра сильно ограничено. А их более крупные «собратья» предназначаются уже для работы в открытом море, где для любых размеров найдется место развернуться. Их использование будет намного выгоднее, так как за один раз можно выкачать сразу большой объем ресурса, чтобы сэкономить на транспортных затратах, которые приходится нести каждый раз при дороге до порта и обратно.

 

 

 

Обычно буровая платформа в море проводит всего несколько дней, после чего ей нужно вернуться на базу для опустошения резервуаров. Количество водных источников добычи сильно ограничено тяжестью условий залегания, поэтому к ним прибегают только в случае действительно огромных запасов или высокого качества продукта. Хотя в будущем эта отрасль выйдет на первый план, когда запасы на суше иссякнут.

Разновидности платформ

Буровые платформы России представлены обеими разновидностями. Для страны нефть играет важнейшее значение, поэтому ее добыча регулируется на государственном уровне и просчитывается самым тщательным образом. Недавно было запланировано удвоение всех имеющихся на текущий момент платформ в течение 15 лет, но экономический кризис поставил крест на этих планах. Теперь новые вышки будут появляться в весьма ограниченном количестве.

 

Если интересуют фото буровой платформы, то стоит посмотреть их в интернете. Также могут пригодиться описания самых распространенных моделей:

 

  • •    полупогружная буровая платформа может добывать нефть с глубины 10 километров при максимальном слое воды в 3 километра;
  • •    самоподъемная буровая платформа работает на глубинах 6,5 километров, но толщина воды при этом не может быть больше 30 метров;
  • •    буровая платформа судно работает на малых глубинах, когда нефть залегает практически на поверхности континентального шлейфа.

 

Обо всех других разновидностях можно почитать на сайтах производителей.

promplace.ru

Буровые платформы — Добыча нефти и газа

История развития

В настоящее время на долю нефти, добытой из морских месторождений, приходится около 30 % всей мировой продукции, а газа — еще больше. Как люди добираются до этого богатства?

Самое простое решение — на мелководье забивают сваи, на них устанавливают платформу, а на ней уже размещают буровую вышку и необходимое оборудование.

Другой способ — "продлить" берег, засыпав мелководье грунтом. Так, в 1926 г. была засыпана Биби-Эйбатская бухта в районе Баку и на ее месте создан нефтяной промысел.

После того как в Северном море были обнаружены большие залежи нефти и газа более полувека назад, родился смелый проект его осушения. Дело в том, что средняя глубина большей части Северного моря едва превышает 70 м, а отдельные участки дна покрыты всего лишь сорокаметровым слоем воды. Поэтому авторы проекта считали целесообразным с помощью двух дамб — через пролив Ла-Манш в районе Дувра, а также между Данией и Шотландией (длина более 700 км) — отсечь огромный участок Северного моря и откачать оттуда воду. К счастью, этот проект остался только на бумаге.

В 1949 г. в Каспийском море в 40 км от берега была пробурена первая в СССР нефтяная скважина в открытом море. Так началось создание города на стальных сваях, названного "Нефтяные Камни". Однако сооружение эстакад, уходящих на многие километры от берега стоит очень дорого. Кроме того, их строительство возможно только на мелководье.

При бурении нефтяных и газовых скважин в глубоководных районах морей и океанов использовать стационарные платформы технически сложно и экономически невыгодно. Для этого случая созданы плавучие буровые установки, способные самостоятельно или с помощью буксиров менять районы бурения.

Различают самоподъемные буровые платформы, полупогружные буровые платформы и буровые платформы гравитационного типа.

 Самоподъемная буровая платформа

   Самоподъемная буровая платформа представляет собой плавучий понтон 1 с вырезом, над которым расположена буровая вышка. Понтон имеет трех-, четырех- или многоугольную форму. На ней размещаются буровое и вспомогательное оборудование, многоэтажная рубка с каютами для экипажа и рабочих, электростанция и склады. По углам платформы установлены многометровые колонны-опоры 2.

В точке бурения с помощью гидравлических домкратов колонны опускаются, достигают дна, опираются на грунт и заглубляются в него, а платформа поднимается над поверхностью воды. После окончания бурения в одном месте платформу переводят в другое. Надежность установки самоподъемных буровых платформ зависит от прочности грунта, образующего дно в месте бурения.

самоподъемная буроваяСамоподъемная буровая платформа в транспортном положении: 1 — плавучий понтон; 2 — подъемная опора; 3 — буровая вышка; 4 — поворотный (грузовой) кран; 5 — жилой отсек; 6 — вертолетная площадка; 7 — подвышенный портал; 8 — главная палуба

Полупогружные буровые платформы

     Полупогружные буровые платформы применяют при глубинах 300...600 м, где неприменимы самоподъемные платформы. Они не опираются на морское дно, а плавают над местом бурения на огромных понтонах. От перемещений такие платформы удерживаются якорями массой 15 т и более. Стальные канаты связывают их с автоматическими лебедками, ограничивающими горизонтальные смещения относительно точки бурения.

Полупогружная буровая платформа: 1 — погружной понтон; 2 — стабилизационная колонна; 3 — верхний корпус; 4 — буровая установка; 5 — грузовой кран; 6 — вертолетная площадка.полупогружная буровая

Первые полупогружные платформы были несамоходными, и их доставляли в район работ с помощью буксиров. Впоследствии платформы были оборудованы гребными винтами с приводом от электромоторов суммарной мощностью 4,5 тысяч кВт.

Недостатком полупогружных платформ является возможность их перемещения относительно точки бурения под воздействием волн.

Буровые платформы гравитационного типа

Более устойчивыми являются буровые платформы гравитационного типа. Они снабжены мощным бетонным основанием, опирающемся на морское дно. В этом основании размещаются не только направляющие колонны для бурения, но также ячейки-резервуары для хранения добытой нефти и дизельного топлива, используемого в качестве энергоносителя, многочисленные трубопроводы. Элементы основания доставляются к месту монтажа в виде крупных блоков.

Морское дно в месте установки гравитационных платформ должно быть тщательно подготовлено. Даже небольшой уклон дна грозит превратить буровую в Пизанскую башню, а наличие выступов на дне может вызвать раскол основания. Поэтому перед постановкой буровой "на точку" все выступающие камни убирают, а трещины и впадины на дне заделывают бетоном.

типы буровых платформ Наиболее мобильной конструкцией, способной ра­ботать на произвольной глубине, является буровое судно, т.е. корабль, специально построенный или модифициро­ванный для бурении в глубокой воде. Динамическое по­зиционирование оборудования с помощью двигателя с регулируемым шагом позволяет удерживать судно над стволом скважины.

Все типы буровых платформ должны выдерживать напор волн высотой до 30 м, хотя такие волны и встречаются раз в 100 лет.

Похожие статьи:

Бурение → Буровое оборудование. Справочник. Том. 1, 2 В.Ф. Абубакиров

Бурение → Буровые установки Уралмашзавода

Бурение → Буровые промывочные и тампонажные растворы. Булатов А.И. Макаренко П.П. Проселков Ю.М.

rengm.ru

платформа для морской добычи нефти - патент РФ 2441129

Изобретение относится к области обустройства и освоения морских нефтегазовых месторождений, а более конкретно к способам и средствам предупреждения аварийных ситуаций. Платформа для морской добычи нефти включает буровую установку с приводом, палубу платформы, подъемный кран, вспомогательный блок (тендерную установку), буровую трубу, ствол скважины, фундамент скважины, подводное оборудование, включающее устройства регулировки расхода жидкости и газа, коллекторы, подводные выкидные линии, блокираторы, подводную систему управления. Буровая труба оснащена защитной оболочкой с возможностью фиксации на палубе платформы и в фундаменте скважины, которая выполнена из химически стойкого и водостойкого, светозащитного и силового слоев, и оснащена рукавами с впускными клапанами, расположенными по длине защитной оболочки и соединенными с мобильными эластичными резервуарами, в верхней части буровой трубы в отводном коллекторе размещен дистанционно управляемый внутритрубный снаряд. Обеспечивает предотвращение возможности утечки нефти в аварийных масштабах. 2 ил.

Рисунки к патенту РФ 2441129

Изобретение относится к области обустройства и освоения морских нефтегазовых месторождений, а более конкретно к способам и средствам предупреждения аварийных ситуаций.

В настоящее время добыча нефтегазовых ресурсов континентального шельфа переносится из мелководных незамерзающих морей на большие морские глубины и акватории с тяжелыми ледовыми условиями, отдаленные от обустроенных береговых промышленно-производственных инфраструктур.

Обустройство и эксплуатация открытых месторождений требует разработки специальных технологий, технических средств и технологических схем добычи, подготовки, сбора, хранения и транспортировки добываемой продукции. Эти задачи имеют различные решения в зависимости от гидрометеорологических условий и наличия береговых инфраструктур.

В настоящее время в основном проектируют морские нефтегазовые станции металлической конструкции. Однако по предварительным экспертным оценкам специалистов, видна не завершенность обоснования только их использования. Поэтому целесообразно провести комплексные исследования по созданию железобетонных конструкций морских сооружений в районе Мурманской области.

Одной из важнейших проблем является необходимость наличия технических средств для эвакуации персонала при экстремальных ситуациях на объектах обустройства в любых природно-климатических условиях шельфа замерзающих морей.

В настоящее время в мире имеется несколько тысяч морских нефтегазопромысловых инженерных сооружений для бурения и эксплуатации нефтяных и газовых скважин.

Опыт работы которых показывает, что при освоении месторождений с их помощью зачастую возникают крупные аварии, приводящие к человеческим жертвам и травматизму, загрязнениям окружающей среды и значительным капитальным затратам на их ликвидацию [Р.И.Вяхирев, Б.А.Никитин, Д.А.Мирзоев. Обустройство и освоение морских нефтегазовых месторождений. М.: Издательство Академии горных наук. 1999, с.335-343].

Одной из последних крупных аварий является авария, которая произошла 20 апреля 2010 года в ходе буровых работ на нефтяной платформе «Deepwater Horizon» в Мексиканском заливе в 80 километрах от побережья американского штата Луизиана, на которой произошел взрыв, который вызвал сильный пожар. После двух суток пожара платформа затонула, оставив после себя большое нефтяное пятно [http://www.novoteka/ru/click?-URL=http://lenta/ru/articles/2010/04/29/oilrig/].

Пробуренный пласт Macondo считается небольшим, всего 100 миллионов баррелей. Однако, при скорости утечки 5000 баррелей в сутки, если его не заглушить, то он будет фонтанировать 60 лет.

Инцидент на платформе привел и к выбросу нефти в воды залива. В момент ЧП на буровой установке находилось порядка 700 тысяч галлонов дизельного топлива. Из-за аварии в воду вылилось более 300 тысяч галлонов (более миллиона литров) необработанной нефти (сырца). По предварительным оценкам площадь нефтяного пятна уже в первые дни составляла полторы тысячи квадратных километров, и оно ежедневно пополняется как минимум 5 тысячами баррелей нефти из поврежденной в трех местах скважины.

Для устранения места аварии были задействованы четыре дистанционно управляемые подводных аппарата, но добиться каких-либо существенных результатов не удалось даже спустя неделю после затопления платформы. В общей сложности в работах по устранению последствий аварии уже в первые дни были заняты 700 человек, четыре самолета и 32 специализированных судна для сбора нефтепродуктов.

Авария в Мексиканском заливе может повлечь ужесточение требований безопасности к добыче нефти. В первую очередь, изменения требований коснутся проведения испытаний оборудования, такого, как противовыбросовый превентор, устанавливаемый на морском дне. Во время взрыва на нефтяной платформе это устройство не сработало и не заблокировало выход нефти из поврежденных аварией скважин.

Длина полупогруженной буровой платформы «Deepwater Horizon» составляет 121 м, ширина - 78 м. Платформа может самостоятельно перемещается с места на место. Она может бурить в океане, где глубина воды достигает 2400 м. И при этом она способна проходить скважины глубиной до 9100 м.

Устойчивость платформы обеспечивается путем забора воды в специальные емкости. При этом, чем ниже центр тяжести, тем платформа более устойчива.

Динамическое позиционирование обеспечивается только за счет подруливания специальной системой винтов, без использования якорей. С морским дном платформа соединена только посредством буровой трубы.

Платформа оборудована системой телеметрии и передает всю информацию о своем состоянии на берег в режиме реального времени.

По одной из версий причиной взрыва могло стать внутреннее давление, которое резко возросло во время бурения.

«Deepwater Horizon» не была оснащена дистанционно-управляемым блокиратором, обязательно используемым в иных нефтедобывающих странах, таких как Норвегия и Бразилия, который мог бы позволить перекрыть скважину после взрыва на платформе. Причина происшествия в настоящее время расследуется специалистами, но одна из выдвинутых в первые минуты после катастрофы версий указывает на возможность выхода из строя оборудования и возгорания под напором попутных газов. Причиной аварии на буровой платформе в Мексиканском заливе мог стать внезапный выброс нефти из-за подвижки земной коры.

Взрыв произошел три дня спустя после того, как скважина была зацементирована.

По предварительным данным причиной взрыва стал мощный выброс метана из скважины. Такой вывод содержится в отчете ВР о внутреннем расследовании причин аварии, сообщает Associated Press. Специалисты сделали вывод, что облако газа ударило буровую колонну, а затем взорвалось. Эти сведения основаны на опросе сотрудников установки, работавших в момент аварии на ней.

Согласно выводу профессора инженерных наук из Университета Беркли Роберта Би, рабочие установили на фундаменте скважины цементную заглушку, затем снизили давление в буровой колонне и стали устанавливать вторую цементную пломбу уже под фундаментом. По мнению специалиста, химическая реакция, спровоцированная установкой пломб, привела к увеличению температуры и выбросу метана, который сорвал заглушку и вырвался наружу.

Эксперты полагают, что взрыв был спровоцирован выбросом газа, до пузыря которого достала скважина, углубившаяся на 5500 метров. Не исключено, что выброс и повредил предохранительный клапан.

Стояк - огромная труба, которая соединяет платформу со скважиной и в которой находится бур, - лег на дно. Лопнул в трех местах. Из них и течет нефть. На эти места и планируется поставить саркофаги.

Работа по ликвидации утечки проводилась одновременно по нескольким вариантам.

1. ВР не оставляет надежды перекрыть противовыбросовый превентор на поврежденной скважине с помощью подводных роботов. До сих пор подобные попытки к успеху не привели.

2. Специалисты компании строят специальные подводные камеры, которыми будут накрыты места утечек. С помощью этих камер нефть будет откачиваться из скважины в нефтеналивные суда.

3. Выполнение бурения перехватывающих скважин, одна из которых на глубине около 4 км пересечется с поврежденной скважиной и направит нефть из нее по новому руслу. На эту работу уйдет, как предполагается, около 3 месяцев.

4. Специалисты компании начали сбрасывать дисперсирующие вещества непосредственно над местом основной утечки на глубине 1,5 км, что, как ожидается, позволит прибить нефть ко дну и снизить скорость распространения углеводородов по Мексиканскому заливу.

5. Еще одним методом ликвидации утечки стала, установка дополнительного противовыбросового превентора поверх уже существующего, однако есть опасения, что такая мера может вызвать дальнейшее повреждение скважины.

В Национальном управлении по проблемам океана и атмосферы (НОАА) США сообщили, что по поверхности океана в месте катастрофы (на 29 апреля) уже разлилось пятно длиной 78 км и шириной 63 км, которое продолжает увеличиваться.

Интенсивность утечки нефти из скважин затонувшей буровой установки вводы Мексиканского залива может достигать 100 тыс. баррелей в день.

На 30 апреля более легкая нефть уже достигла берега, более густая находилась еще в восьми километрах от суши. Нефтяное пятно растеклось на площади более чем 75 тысяч квадратных километров.

Для того чтобы не дать нефти достичь береговой линии, была опробована технология сжигания нефти в море. Первый пробный поджог состоялся 28 апреля. В местах скопления нефти сформировали периметр из огнеупорных бонов и отбуксировали его от основного разлива. Затем нефть внутри периметра подожгли с помощью специальных плотов. К ночи контролируемое сжигание нефти было прекращено. После сгорания нефтепродуктов в воде остаются комки, которые легко извлечь с помощью сетей. Продукты горения нефти уже не будут опасны для морских животных, птиц и рыб.

Однако экологи считают, что продукты горения нефти могут привести к отравлению рыб, а также сильно загрязнить воздух в регионе, однако согласны с тем, что это загрязнение будет менее серьезным, по сравнению с тем, которое уже принесли взрыв и последующий пожар на нефтяной вышке. Кроме того, последствия «контролируемого поджога» менее страшны, чем вред от нефтяной пленки, особенно если она достигнет суши.

Компании ВР удалось устранить одну из трех утечек нефти на дне Мексиканского залива. Об этом 5 мая сообщил британский телеканал «Sky News». Место, где просачивается нефть, теперь накрыто металлическим контейнером-сборщиком пирамидальной формы. По информации из другого источника блокировать выброс нефти удалось на самой маленькой течи при помощи специального вентиля. Остальные две течи находятся на такой глубине, где нельзя будет повторно применить этот метод. По состоянию на 6 мая в океан попало 9, 5 тысяч тонн нефти. Количество выливающейся в океан нефти не уменьшилось.

ВР планирует установить в районе утечки специальный металлический купол (колокол), который будет собирать растекающуюся на глубине нефть и отправлять ее на поверхность. Колокол представляет собой 98 тонную железобетонную коробку, которая напоминает примитивную космическую ракету с отверстием наверху, через которое по трубе планируется откачивать нефть. Колокол должен собрать 85% нефти, исходящей с морского дна. Однако власти штата Луизиана скептически отнеслись к идее сооружения улавливающего купола. Причина в том, что эта технология ранее никогда не использовалась в аналогичных ситуациях и ее эффективность не доказана. Имеется информация, что подобная технология использовалась в 2005 году после урагана Катрина, но на значительно меньшей глубине.

По состоянию на 6 мая около 100 судов, включая 20 крупнейших в своем классе, ведут сбор нефти с поверхности океана. Идет мобилизация судов для сбора нефти. ВР заключило контракты на выполнение этих работ с 1,2 тысяч рыболовецких судов. Создаются заграждения для защиты побережья. В защитных мероприятиях принимают участие 4 тысячи местных жителей, работа которых оплачивается по 10 долларов в час. На борьбу с утечкой нефти мобилизованы силы Национальной гвардии США.

Перед пуском колокола необитаемые подводные аппараты расчистили место прорыва скважины от мусора и обломков. При спуске колокола на глубину 1520 м специалисты опасались, что пары нефти, исходящие с поверхности воды в безветренную погоду, могут воспламениться из-за случайно возникшей искры между железными частями конструкции.

Для придания нужного положения колоколу непосредственно над местом утечки были использованы пять подводных роботов.

9 мая руководство ВР решило приостановить работы после того, как на внутренней поверхности 100-тонного купола образовались легковоспламеняющиеся газовые гидраты - кристаллические соединения различных газов с водой, которые образуются при определенных соотношениях давления и температуры. Они заблокировали проем купола, предназначенный для сбора нефти. Чтобы участники операции смогли обследовать купол и очистить его от газогидратов, конструкция была поднята с морского дна и сдвинута в сторону. По оценкам руководства ВР на очистку купола потребуется не менее двух дней.

Затем были начаты работы по строительству нового купола, которым смогут перекрыть утечку нефти. Новый купол значительно меньше размера прежнего, что, возможно, позволит предотвратить образование в ней взрывоопасных веществ и скопления грязи, что также даст возможность проложить специальный трубопровод для откачки и предотвратить утечку нефти в Мексиканский залив из поврежденной скважины.

Кроме того, активно применялось распыление диспергентов, в том числе под водой на глубине 1500 м. Вертолеты разбрасывали у побережья возле места аварии мешки с песком весом по одной тонне каждый.

Также выполнялись предпринимались попытки закрыть нефтяную скважину специальной резиновой заглушкой диаметром 1,2 м и высотой 1,6 м и создать цементный колокол для того, чтобы сдерживать поток нефти и откачивать ее на поверхность. Второй вариант, более перспективный, но более трудоемкий из-за необходимости бурения параллельной скважины, чтобы можно было контролировать основную скважину. Также рассматривался вариант применения растворителей в местах, где нефть выбивается из поврежденной скважины.

Всего названы пять способов ликвидации последствий взрыва на нефтяной платформе. Причем, поскольку неизвестно, какой из предложенных вариантов решений правильный, работа ведется по всем направлениям. Так, в ВР не оставляют надежды перекрыть противовыбросовый превентор на поврежденной скважине с помощью подводных роботов. Также специалисты компании строят специальные подводные камеры, которыми будут накрыты места утечек. С помощью этих камер нефть будет откачиваться из скважины в нефтеналивные суда.

Также в ВР заявили о начале бурения перехватывающей скважины, которая на глубине около 4 км пересечется с поврежденной скважиной и направит нефть из нее по новому руслу. На эту работу уйдет, как предполагается, около 3 месяцев.

Помимо этого, специалисты компании начали сбрасывать дисперсирующие вещества непосредственно над местом основной утечки, что, как ожидается, позволит прибить нефть ко дну и снизить скорость распространения углеводородов по Мексиканскому заливу. Еще одним методом ликвидации утечки стала установка дополнительного противовыбросового превентора поверх уже существующего, однако есть опасения, что такая мера может вызвать дальнейшее повреждение скважины.

Известны также способы очистки сточных вод от нефтепродуктов, включающие обработку коагулянтом с последующей фильтрацией, в которых для повышения степени очистки в качестве коагулянтов применяют раствор, полученный после обработки изгонолитейного шлака соляной кислотой, а фильтрацию осуществляют через полученный при обработке осадок [Авторское свидетельство СССР № 1439083], или в качестве коагулянта используют хлоризолропилат алюминия или в виде отхода химико-фармацевтической промышленности, образующегося на стадии разложения каталического комплекса производства левомицетина [Авторское свидетельство СССР № 1439085].

Данные способы имеют ограничения по применению, так как могут быть использованы только для очистки воды от нефтепродуктов, протекающей по трубопроводным магистралям или находящейся в закрытых резервуарах малого объема, так как после ввода коагулянта необходимо выполнение операций, связанных с отстаиванием и фильтрацией, что требует дополнительного оборудования, аналогичного, описанного в Авторском свидетельстве СССР № 1712315 и авторском свидетельстве СССР № 1712317.

Известен также способ очистки воды от эмульгированной нефти [Авторское свидетельство СССР № 1456000] и способ разрушения нефтяной эмульсии [Авторское свидетельство СССР № 1456451].

В способе очистки воды от эмульгированной нефти [Авторское свидетельство СССР № 1456000], включающем введение гомополимера диметилдиаллиламмоний хлорида, перемешивание и отстаивание, для сокращения остаточного содержания нефти в воде, вводят 0,1-30%-ный водный раствор гомополимера демитилдиаллиламмония хлорида, содержащего 5-10 мас.% мономера и имеющего вязкость 16000-32000 мПа·с, измеренную в 38%-ном водном растворе при температуре 25 градусов.

Данный способ имеет также ограниченное применение, так как применим только для очистки воды от нефти ограниченного объема, обусловленного размерами очистного резервуара. Кроме того, выполнение условий по процентному содержанию вводимых компонентов в условиях естественных открытых водоемов практически невозможно.

В способе разрушения нефтяной эмульсии [Авторское свидетельство СССР № 1456451] разрушение нефтяной эмульсии производится путем обработки ее деэмульгатором, содержащим алкилсульфонат, с получением нефтяной фазы, в котором для содержания в нефтяной фазе солей и воды используют деэмульгатор, содержащий в качестве алкилсульфоната натриевую соль сульфированного отхода производства сульфонала на основе керосина и дополнительно содержащий сополимер этилена с пропиленом с мол.м. 5600-60000 с молярным соотношением звеньев пропилена и этилена (35-48):(65-52) соответственно, при массовом соотношении натриевой соли сульфинированного отхода и сополимера в деэмульгаторе (1,5-3):1.

Реализация данных способов также имеет ограничения по объему очищаемой воды, так как после ее обработки необходимо выполнить операции отстаивания и фильтрации и по выполнению условий по процентному содержанию вводимых компонентов, что для открытых водоемов практически не осуществимо.

Выявленных недостатков лишен способ очистки поверхности воды от нефти, включающий нанесение измельченного сорбента на основе каучука с последующим механическим сбором, полученной фазы вещества, в котором в качестве сорбента используют каучуки с полярными группами и размером фракций не более 3-5 мм, при этом используют каучук, содержащий группы нитрилакриловой или метакриловой кислот [Авторское свидетельство СССР № 1712313].

Данный способ может быть использован и на открытых водоемах. Однако при обработке больших загрязненных водных поверхностей по причине использования каучуков, реализация способа требует крупных материальных затрат, а также существенных трудозатрат, связанных с последующим механическим сбором сорбента, например нефтеловушкой [Авторское свидетельство СССР № 1712316].

Кроме того, известные способы, основанные на вводе веществ, содержащих кислоты, экологически не безопасны, что может отрицательно сказаться на макроструктуре водных акваторий, особенно имеющих промысловое значение.

Известен также способ локализации аварийных разливов нефти на поверхности воды, включающий обработку жидким парафином, в котором загрязненную поверхность воды обрабатывают сначала неорганическим сорбентом, например азеритом или стеклозитом, или их смесью с размером зерен не менее 3 мм, а затем наносят жидкий парафин в количестве 4,0-8,5 мас.% от количества нефти [Авторское свидетельство СССР № 1722314], что также связано со значительными трудозатратами и со сложностью выполнения условий по процентному содержанию вводимых веществ.

В известном способе [Патент РФ № 2081854] для очистки воды и почвы от нефтепродуктов используют биореагент на основе торфа, что требует дальнейшего сбора, модифицированных веществ, полученных при обработке нефтяных загрязнений, посредством специальных плавучих средств, аналогичных описанным в [Патент РФ № 2081967].

Известен также способ локализации нефтяного загрязнения на поверхности воды, включающий создание заграждения, препятствующего растеканию нефти на поверхности воды, в котором заграждения создают в виде кромки спекшейся нефти путем многократного воздействия на каждый ее элементарный объем лазерным излучением в видимой или инфракрасной областях спектра [Авторское свидетельство СССР № 1721177].

Данный способ, наряду с его преимуществом перед известными способами, заключающимися в возможности получения спекшихся кромок, которые препятствуют смыканию нефти, также обладает и недостатком, заключающимся в том, что необходимым условием его использования является образование постоянной подъемной силы, препятствующей подтоплению системы плоскостей на ходу судна-заградителя, что в реальных условиях плавания при непостоянстве гидрометеорологических факторов, с учетом непостоянства динамических параметров судна выполнить практически невозможно, что ограничивает применение данного способа только штилевыми условиями.

В известном способе локализации нефтяного загрязнения [патент RU № 2304194], включающем обработку нефтяного загрязнения на поверхности воды световым потоком, с получением модифицированных структур, в котором при обработке нефтяного загрязнения на него воздействуют световым потоком с плотностью 0,8÷0,9·10 5 Вт/см2, причем воздействие световым потоком осуществляют до получения твердой фазы нефтяного продукта с плотностью, превосходящей плотность воды, и ее опускания на дно водоема.

При воздействии на нефтяное загрязнение на поверхности воды световым потоком 0,8÷0,9·105 Вт/см 2 происходит обратимое фазовое превращение вещества, сопровождающееся скачкообразным изменением его химического состава. При этом длительность воздействия световым потоком осуществляется до получения фазы нефтяного продукта с плотностью более 0,10283 г/см, что позволяет получить фазу вещества, представляющего собой жидкий нефтепродукт, в виде твердой фазы.

При облучении световым потоком происходит обратимое фазовое превращение вещества, находящегося в жидкой фазе, сопровождающееся скачкообразным изменением его химического состава, в фазу твердого состояния, ввиду наличия явления фотохимических фазовых переходов в молекулярных веществах при иницировании светом реакции демиризации или изомеризации.

При применении данного способа исключается необходимость в последующей обработке, полученной фазы нефтепродуктов, связанных с проведением таких технологических операций как отстаивание и фильтрация.

Однако данный способ, как и другие известные способы очистки воды от нефтепродуктов, могут быть использованы после того, как образовался разлив нефти на поверхности.

Известен также биопрепарат для очистки почвы и воды от нефти [патент RU № 2361686].

В качестве твердого субстрата-носителя используется сферозола (отходы теплоэлектростанций), представляющая собой полые стеклокристаллические алюмосиликатные микросферы в составе летучей золы, образуемой при высокотемпературном сжигании углей на теплоэлекторостанциях.

Совокупность уникальных свойств сферозолы: низкая плотность (меньше воды), малые размеры, сферическая форма, большая удельная поверхность, высокая твердость и температура плавления, химическая инертность, свободная растекаемость (сыпучесть) позволяют получить на ее основе эффективный, легкий, сыпучий биопрепарат, который не тонет в воде и не загрязняет окружающую среду. Попадая в загрязненную почву, сферозола способствует ее структурированию, повышает доступ кислорода для почвенной микрофлоры, что стимулирует ее окислительные процессы.

Однако данный биопрепарат может быть использован после того, как образовался разлив нефти на поверхности, и, кроме того, эффект очистки достигается только на 30 сутки (по полученным данным в лабораторных условиях).

В качестве прототипа выбрана платформа, описанная в источнике [Р.И.Вяхирев, Б.А.Никитин, Д.А.Мирзоев. Обустройство и освоение морских нефтегазовых месторождений. М.: Издательство Академии горных наук. 1999, с.123-124, 134-149].

Задачей настоящего технического решения является предотвращение возможности утечки нефти в аварийных масштабах.

Поставленная задача решается за счет того, что платформа для морской добычи нефти включает буровую установку с приводом, палубу платформы, подъемный кран, вспомогательный блок (тендерную установку), буровую трубу, ствол скважины, фундамент скважины, подводное оборудование, включающее устройства регулировки расхода жидкости и газа, коллекторы, подводные выкидные линии, блокираторы, подводную систему управления, в которой буровая труба оснащена защитной оболочкой с возможностью фиксации на палубе платформы и в фундаменте скважины, которая выполнена из химически стойкого и водостойкого, светозащитного и силового слоев, и оснащена рукавами с впускными клапанами, расположенными по длине защитной оболочки и соединенными с эластичными резервуарами, в верхней части буровой трубы в отводном коллекторе размещен дистанционно управляемый внутритрубный снаряд.

Новые отличительные признаки заключаются в том, что буровая труба оснащена защитной оболочкой с возможностью фиксации на палубе платформы и в фундаменте скважины, защитная оболочка выполнена из химически стойкого и водостойкого, светозащитного и силового слоев, и оснащена рукавами с впускными клапанами, расположенными по длине защитной оболочки и соединенными с мобильными эластичными резервуарами, в верхней части буровой трубы в отводном коллекторе размещен дистанционно управляемый внутритрубный снаряд.

Сущность заявляемого технического решения поясняется чертежами (фиг.1, фиг.2).

Фиг.1. Конструкция дистанционно управляемого внутритрубного снаряда. Дистанционно управляемый снаряд содержит колесо 1 ролика, ось ролика 2, кронштейн 3 ролика, корпус ролика 4, фиксатор 5 цанги, который представляет собой болт, плиту 6 привода цанг, болт 7 крепления сферической опоры, верхнюю крышку 8 сферической опоры, нижнюю крышку 9 (вкладыша) сферической опоры, ось 10 привода плиты привода цанг, болт 11 фиксации оси привода плиты цанг, фиксирующее кольцо 12, внутренний цилиндр 13 корпуса цанг, цангу 14, направляющую 15 цанги, болт 16 фиксации направляющей цанги, конус 17 цанг (подвижная щека уплотнителя), уплотнитель 18, плиту 19 (неподвижная щека уплотнителя) уплотнителя, ролик 20 (в сборе), болта 21 крепления ролика, наружный цилиндра 22 корпуса (корпус скольжения), разжимную пружину 23, направляющую 24 разжимной пружины, гидроцилиндр 25, болт 26 фиксации оси привода плиты цанг, уплотнитель 27, поршень 28, уплотнитель 29, крышку 30 гидроцилиндра, вкладыш сальников 31.

Фиг.2. Конструкция платформы. Платформа для морской добычи нефти включает буровую установку 32 с приводом, палубу 33 платформы, подъемный кран 34, вспомогательный блок 35 (тендерную установку), буровую трубу 36, ствол скважины 37, фундамент скважины 38, подводное оборудование 39, включающее устройства регулировки расхода жидкости и газа, коллекторы, подводные выкидные линии, блокираторы, подводную систему управления. Буровая труба 36 оснащена защитной оболочкой 40 с возможностью фиксации на палубе 33 платформы и в фундаменте 38 скважины, которая выполнена из химически стойкого и водостойкого, светозащитного и силового слоев, и оснащена рукавами 41 с впускными клапанами 42, расположенными по длине защитной оболочки 40. Рукава 41 соединены с мобильными эластичными резервуарами 43, в верхней части буровой трубы 36 в отводном коллекторе 44 размещен дистанционно управляемый внутритрубный снаряд 45.

Конструкция дистанционно управляемого снаряда 45 обеспечивает перекрытие трубопровода для выполнения работ по устранению очага повреждения трубопровода, с возможностью его перемещения в зоне очага повреждения по оси трубопровода. Дистанционно управляемый снаряд 45 выполнен с активным управлением скоростью движения.

Мобильный эластичный резервуар 43 предназначен для временного хранения нефтепродуктов. Каждый мобильный эластичный резервуар 43 содержит поддон, установленный на понтоне.

На верхней поверхности поддона размещена с возможностью фиксации замкнутая оболочка, состоящая из топливостойкого, светозащитного и силового слоев и имеющая на верхней поверхности сливоналивную горловину, соединенную с соответствующим рукавом 41. При этом топливостойкий слой выполнен из двух слоев полимерного материала толщиной 80-150 мкм с массой не более 0,3 кг/м 2, разрывной нагрузкой не менее 200 Н, температурой хрупкости не менее минус 50°C, максимальной температурой хранимого нефтепродукта не выше 70°C, проницаемостью не более 10 г/м 2 сутки, светозащитный слой - из электропроводной саженаполненной полиэтиленовой пленки толщиной 80-150 мкм, силовой слой размещен с наружной стороны резервуара и выполнен из одного или двух слоев фальцованной полипропиленовой ткани с поверхностной плотностью 200±20 г/м2 и количеством нитей на 10 см ткани по основе и по утку 54±2 и 50±2 соответственно, при этом внутренняя часть поддона выполнена из материала, идентичного материалу топливостойкого слоя, и представляет замкнутую герметичную полость для заполнения воздухом или другим агентом, а наружная - из материала, идентичного материалу силового слоя, боковые стенки наружной части поддона имеют высоту, равную не менее 0,7 от высоты заполненного эластичного резервуара, и расположены относительно днища под углом 65-75°.

Мобильный эластичный резервуар 43 для нефтепродуктов установлен на поддоне 46, на котором размещена с возможностью фиксации (за счет сил тяжести и трения) замкнутая оболочка, состоящая из топливостойкого, светозащитного и силового слоев. Все слои, в том числе и снегозащитный, соединены в области горловины. В верхней части поддон 46 снабжен крышкой, предназначенной для исключения возможности всплытия мобильного эластичного резервуара при погружении понтона 47, а также для исключения давления водной массы на мобильный эластичный резервуар при всплытии понтона 47.

Все используемые в конструкции мобильного эластичного резервуара 43 для нефтепродуктов материалы выпускаются отечественной промышленностью в виде рукавов шириной 800, 1500, 3000 и 6000 мм, что упрощает процесс создания резервуара (соединение торцевых слоев известными методами - сварка, склейка, сшивка и др.).

Так, в качестве топливостойкого слоя можно использовать полимерный материал толщиной 80-150 мкм с массой не более 0,3 кг/м2, разрывной нагрузкой не менее 200 Н, температурой хрупкости не менее минус 50°C, максимальной температурой хранимой рабочей среды не выше 70°C, проницаемостью не более 10 г/м2 сутки.

Аналогом мобильного эластичного резервуара 43 является мобильный эластичный резервуар для нефтепродуктов типа ЭР-50 [Описание к патенту РФ № 2304553] с характеристиками, приведенными в таблице 1.

Понтон 47 снабжен балластным блоком, который состоит из верхней части камеры с балластоотжимающей магнитной жидкостью, сообщающейся с нижней частью камеры через трубку, уложенную по спирали внутри статора асинхронного электродвигателя. Перед нижней частью камеры размещен управляемый вентиль. Нижняя часть разделена вялой мембраной на две секции, стенки внешней секции нижней части камеры имеют отверстия для обеспечения протока балласта (воды окружающей среды) при его отжиме (приеме). Аналогом балластного блока являются устройства, приведенные в описании к авторским свидетельствам СССР № 1354572 и № 1413849.

Работа предлагаемого технического решения заключается в следующем.

При наличии аварийной ситуации, аналогичной с платформой Deepwater Horizon, при выбросе нефти из скважины (фиг.2), защитная оболочка 40, зафиксированная на палубе 33 платформы и на фундаменте 38 скважины, не дает нефтепродукту растекаться в толще водной среды. При фонтанировании нефтепродукта под давлением, при его достижении рукавов 41 с клапанами 42, нефтепродукт начнет поступать через рукава 41 в мобильные эластичные резервуары 43, по мере заполнения которых сработает соответствующий клапан 42 соответствующего резервуара 43.

При появлении сигнала тревоги о возникновении аварийной ситуации подается команда дистанционно управляемый внутритрубный снаряд 45, который начнет перемещаться в буровую трубу 36 и перекроет ее, не давая нефтепродукту выливаться на палубу 33 платформы.

При заполнении мобильных эластичных резервуаров 43 они посредством понтонов 45 поднимаются на водную поверхность. При продолжении подъема нефтепродукта под давлением, вместо заполненных мобильных эластичных резервуаров могут быть посредством понтонов 45 установлены пустые мобильные эластичные резервуары 43.

Поднятые на поверхность нефтепродукты в дальнейшем могут быть утилизированы или использованы в качестве сырья путем фильтрации. Очистка воды от остатков нефтепродукта может быть выполнена одним из вышеназванных известных способов очистки водной среды от нефтепродуктов.

Основные узлы и элементы предлагаемого устройства имеют апробацию, что позволяет сделать вывод о соответствии заявляемого предложения условию патентоспособности "промышленная применимость".

ФОРМУЛА ИЗОБРЕТЕНИЯ

Платформа для морской добычи нефти, включающая буровую установку с приводом, палубу платформы, подъемный кран, вспомогательный блок (тендерную установку), буровую трубу, ствол скважины, фундамент скважины, подводное оборудование, включающее устройства регулировки расхода жидкости и газа, коллекторы, подводные выкидные линии, блокираторы, подводную систему управления, отличающаяся тем, что буровая труба оснащена защитной оболочкой с возможностью фиксации на палубе платформы и в фундаменте скважины, которая выполнена из химически стойкого и водостойкого, светозащитного и силового слоев, и оснащена рукавами с впускными клапанами, расположенными по длине защитной оболочки и соединенными с мобильными эластичными резервуарами, в верхней части буровой трубы в отводном коллекторе размещен дистанционно управляемый внутритрубный снаряд.

www.freepatent.ru