Потери нефти и нефтепродуктов при эксплуатации резервуарных парков. Потери нефти и нефтепродуктов


Потери нефти и нефтепродуктов при эксплуатации резервуарных парков

Важной задачей при эксплуатации резервуарных парков является сохранение качества и количества продукта. Это требует обеспечения максимальной герметизации всех процессов слива, налива и хранения. Основная доля потерь от испарения на протяжении всего пути движения нефти от промысла до нефтеперерабатывающих заводов, на самих заводах и нефтепродуктов от заводов до потребителей приходится на резервуары (по отраслям нефтяной промышленности количественные безвозвратные потери распределяются следующим образом: потери на нефтепромыслах - 4,0%; на нефтеперерабатывающих заводах - 3,5%; при транспорте и хранении нефти и нефтепродуктов на нефтебазах и нефтепродуктопроводах - 2,0%. Всего 9,5%).

Все потери нефти и нефтепродуктов классифицируются на следующие виды: количественные потери; качественно-количественные потери, при которых происходит количественная потеря с одновременными ухудшениями качества нефтепродукта, - потери от испарения; качественные потери, когда ухудшается качество нефтепродукта при неизменном количестве, - потери при недопустимом смешении.

Кроме того, следует выделить еще две группы потерь углеводородного сырья, характеризующие естественную убыль и безвозвратные потери при авариях.

Согласно «Нормам естественной убыли...» под естественной убылью понимаются потери, являющиеся следствием несовершенства существующих в данное время средств и технологии приема, хранения, отпуска и транспорта продуктов. При этом допускается лишь уменьшение количества при сохранении качества в пределах заданных требований. Естественная убыль может быть также обусловлена изменением физико-химических свойств нефтепродукта или воздействием метеорологических факторов.

Потери, вызванные, нарушениями требований стандартов, технических условий, правил технической эксплуатации, хранения относят к аварийным или сверхнормативным потерям. К аварийным потерям относят также потери, вызванные природными: стихийными бедствиями или действием посторонних сил.

Нефтепродукты в зависимости от физико-химических свойств, обуславливающих их естественную убыль, распределены по восьми группам (табл. 4.13). Календарный год делится на два периода: осенне-зимний (с 1 октября по 31 марта включительно) и весенне-летний (с 1 апреля по 30 сентября включительно).

Сокращение нормативных и сверхнормативных потерь нефти все еще остается одной из «вечных» проблем в области транспорта и хранения. За последние годы проделана значительная работа в этом направлении, но величина потерь все еще велика. Специалисты отмечают, что она может составлять 1,5% от добываемой нефти. Эта цифра не вызывает особого удивления на современном уровне развитии технологии транспорта, хотя тридцать лет назад она также не превышала 2%. Нефть и нефтепродукты проходят сложный путь транспортировки, перевалки, хранения и распределения. Ориентировочно можно считать, что до непосредственного использования нефтепродукты подвергаются более чем 20 перевалкам, при этом 75% потерь происходит от испарения и только 25% от аварий и утечек.

В системе Госкомнефтепродукта в начале 70-х годов основная доля потерь приходилась на резервуарные парки (до 70%), причем около 65% от испарения при «малых» и «больших» дыханиях.

Потери нефтепродуктов только при наливе железнодорожных цистерн почти в 6 раз превышают потери из резервуара.

Потери от испарения при наливе нефтей и нефтепродуктов в цистерны в Великобритании оцениваются в размере 0,4÷0,6% и достигают 120 тыс. т. год. Имеющиеся установки регенерации паров путем охлаждения, конденсации или адсорбции малоэффективны. Ведется разработка новых, более совершенных методов с использованием фильтрования через углеродную насадку. Американские аналогичные установки уже позволяют регенери­ровать до 95%, но эффективны только при высокой оборачиваемости резер­вуаров и концентрации углеводородов в паровоздушной смеси более 35%.

Проведение различных мероприятий по снижению потерь дает положительный эффект. Но даже по официальным данным видно, что потери еще очень велики. Так, из отчета Сургутского РНПУ естественная убыль нефти только за один месяц составила 3370 тонн.

В результате измерений было установлено, что газовый фактор нефти после прохождения резервуаров уменьшается в 2,5÷3 раза по сравнению со значением, которое имела нефть на входе в резервуары. Интересно отметить наличие легких углеводородов в составе нефтяного газа табл. 7.14.

Особое значение аналогичные исследования могут иметь для совершенствования аварийно-восстановительных работ с точки зрения взрывопожаробезопасности их проведения, уменьшения потенциального стока нефти при нарушении герметичности нефтепровода.

Наибольшие потери нефти от испарения отмечаются в резервуарах со стационарной крышей. Величина их обычно составляет около 0,14% хранимого объема, но в ряде случаев может увеличиваться в 1,5 раза. По данным СибНИИНП в 1 м3 товарных нефтей Западной Сибири содержится от 0,15 до 0,76 м3 растворенного и окклюдированного газа. При движении нефти по трубопроводам такой газ переходит в газовую фазу, образуя пробки, а попадая в резервуар, теряется в атмосферу через дыхательную арматуру.

Одним из существующих средств сокращения потерь является окраска наружной поверхности резервуаров светоотражающими красками, табл. 7.15. В случае, если температура нефти в резервуарах выше среднесуточной температуры окружающего воздуха то снижение потерь нефти от испарения от окраски резервуара светоотражающими красками практически отсутствует. Наибольшей эффективностью в сокращении потерь нефти от испарения при окраске обладает белая краска. Кроме того, сохранность белой краски на резервуарах (нитрокраски, эмали) достигает 3-г4 года, а алюминиевой - 1,5÷2 г.

studfiles.net

Потери нефти и нефтепродуктов при эксплуатации резервуарных парков.

Одной из важнейших задач при эксплуатации резервуарных парков является сохранение качества и количества хранимого продукта. Решение этой задачи требует обеспечения максимальной герметизации всех процессов слива, налива и хранения. Основная доля потерь от испарения приходится на резервуары.

Все потери нефти и нефтепродуктов классифицируются на следующие виды:

  1. количественные потери — в этом случае качественный состав нефтепродуктов остается неизменным;
  2. качественно-количественные потери — происходит количественная потеря с одновременными ухудшениями качества нефтепродукта. К этому виду потерь относится испарение нефтепродуктов, когда вместе со снижением объема хранимого в резервуаре нефтепродукта происходит изменение плотности, вязкости и др. свойств продукта.
  3. качественные потери, когда ухудшается качество нефтепродукта при неизменном количестве. В основном – это потери при недопустимом смешении нефтепродуктов.

Кроме того, следует выделить еще две группы потерь углеводородного сырья, характеризующие естественную убыль и безвозвратные потери при авариях.

Согласно «Нормам естественной убыли…» (скачать РД 153-39.4-033-98) под естественной убылью понимаются потери, являющиеся следствием несовершенства существующих в данное время средств и технологии приема, хранения, отпуска и транспорта продуктов.

При этом допускается лишь уменьшение количества при сохранении качества в пределах заданных требований. Естественная убыль может быть также обусловлена изменением физико-химических свойств нефтепродукта или воздействием метеорологических факторов.

Потери, вызванные нарушениями требований стандартов, технических условий, правил технической эксплуатации, хранения относят к аварийным или сверхнормативным потерям. К аварийным потерям относят также потери, вызванные природными: стихийными бедствиями или действием посторонних сил.

Потери нефтепродуктов при из резервуаров классифицируются следующим образом (табл.1)

Таблица 1.

Источники потерь нефтепродуктов

Источники потерь Потери, %
В резервуарах 64,8
в том числе:
от «больших дыханий» 54,0
от выдуваний 4,6
от газового сифона 0,9
при зачистке 5,3
в насосных станциях 2,3
с канализационными стоками 7,5
В линейной части 23,5
в том числе:
от утечек 22,3
от аварий 1,2
при наливежелезнодорожных цистерн 1,84

Сокращение нормативных и сверхнормативных потерь нефти остается одной из «вечных» проблем в области транспорта и хранения. За последние годы проделана значительная работа в этом направлении, но величина потерь все еще велика. Специалисты отмечают, что она может составлять 1,5% от добываемой нефти. Эта цифра не вызывает особого удивления на современном уровне развитии технологии транспорта, хотя тридцать лет назад она также не превышала 2%. Нефть и нефтепродукты проходят сложный путь транспортировки, перевалки, хранения и распределения. Ориентировочно можно считать, что до непосредственного использования нефтепродукты подвергаются более чем 20 перевалкам, при этом 75% потерь происходит от испарения и только 25% от аварий и утечек.

В системе Госкомнефтепродукта в начале 70-х годов основная доля потерь приходилась на резервуарные парки (до 70%), причем около 65% от испарения при «малых» и «больших» дыханиях.

Потери нефтепродуктов только при наливе железнодорожных цистерн почти в 6 раз превышают потери из резервуара.

Потери от испарения при наливе нефтей и нефтепродуктов в цистерны в Великобритании оцениваются в размере 0,4/0,6% и достигают 120000 т. год. Имеющиеся установки регенерации паров путем охлаждения, конденсации или адсорбции малоэффективны. Ведется разработка новых, более совершенных методов с использованием фильтрования через углеродную насадку. Американские аналогичные установки уже позволяют регенерировать до 95%, но эффективны только при высокой оборачиваемости резервуаров и концентрации углеводородов в паровоздушной смеси более 35%.

Проведение различных мероприятий по снижению потерь дает положительный эффект. Но даже по официальным данным видно, что потери еще очень велики. Так, из отчета Сургутского РНПУ естественная убыль нефти только за один месяц составила 3370 тонн.

Особое значение аналогичные исследования могут иметь для совершенствования аварийно-восстановительных работ с точки зрения взрывопожаробезопасности их проведения, уменьшения потенциального стока нефти при нарушении герметичности нефтепровода.

Наибольшие потери нефти от испарения отмечаются в резервуарах со стационарной крышей. Величина их обычно составляет около 0,14% хранимого объема, но в ряде случаев может увеличиваться в 1,5 раза. По данным СибНИИНП в 1м3 товарных нефтей Западной Сибири содержится от 0,15 до 0,76 м3растворенного и окклюдированного газа. При движении нефти по трубопроводам такой газ переходит в газовую фазу, образуя пробки, а попадая в резервуар, теряется в атмосферу через дыхательную арматуру.

Одним из существующих средств сокращения потерь является окраска наружной поверхности резервуаров светоотражающими красками. В случае, если температура нефти в резервуарах выше среднесуточной температуры окружающего воздуха то снижение потерь нефти от испарения от окраски резервуара светоотражающими красками практически отсутствует. Наибольшей эффективностью в сокращении потерь нефти от испарения при окраске обладает белая краска. Кроме того, сохранность белой краски на резервуарах (нитрокраски, эмали) достигает 3/4 года, а алюминиевой – 1,5/2 г.

Экспериментальное исследование зависимости потерь нефтепродуктов от окраски резервуара.

В 1999г. на Нижнеднепровской нефтебазе ОАО «Днепронефтепродукт» была произведена окраска РВС-5000 №113 «алюминиевой» краской (пудра Al+олифа). В 2000г. произведена окраска РВС-5000 №112 белой эмалью ПФ-115 (краска ПФ-5135 в 2000г. на Украине не производилась). РВС-5000 №110, 111 были покрашены в 1990г. «алюминиевой» краской (пудра AL+олифа). Все четыре резервуара размещались в одной группе (резервуарный парк №3) см. рис.

Резервуарный парк №3

РВС-5000 (№113) РВС-5000 (№111) РВС-5000 (№112) РВС-5000 (№110)

В период с 06.06.2000г. по 08.06.2000г. в резервуарах находился бензин А95 (м3):

  • РВС-5000 №110 — 4351 м3
  • РВС-5000 №111 — 4288 м3
  • РВС-5000 №112 — 3017 м3
  • РВС-5000 №113 — 4058 м3

Газовое пространство в РВС-5000 №112 было на 1000м3 больше, чем в остальных резервуарах.Были проведены замеры температуры продукта в резервуарах на основании которых построен график (рис.1).

зависимость температуры газового пространства в резервуаре РВС от окраски

Как видно из графика, температура нефтепродукта в резервуаре РВС-5000 №113 (окраска белой эмалью ПФ-115) на 3-40С ниже, чем в остальных резервуарах (окраска «алюминиевой» краской), следовательно сокращается амплитуда колебаний температуры газового пространства резервуара и уменьшаются потери в виде испарений из резервуаров окрашенных белой эмалью (сокращается величина потерь от «малых» дыханий резервуара).

Окраска резервуаров теплоотражающими эмалями относится к так называемым организационно-техническим мероприятиям. Это мероприятие, как сказано выше, может иметь и нулевую эффективность, поэтому на практике используются и другие методы снижения потерь нефтепродуктов из резервуаров о которых мы поговорим позднее.

Понравилось это:

Нравится Загрузка...

Похожее

myecology.wordpress.com

Потери нефти и нефтепродуктов при эксплуатации резервуарных парков — КиберПедия

Важной задачей при эксплуатации резервуарных парков является сохранение качества и количества продукта. Это требует обеспечения максимальной герметизации всех процессов слива, налива и хранения. Основная доля потерь от испарения на протяжении всего пути движения нефти от промысла до нефтеперерабатывающих заводов, на самих заводах и нефтепродуктов от заводов до потребителей приходится на резервуары (по отраслям нефтяной промышленности количественные безвозвратные потери распределяются следующим образом: потери на нефтепромыслах – 4,0%; на нефтеперерабатывающих заводах – 3,5%; при транспорте и хранении нефти и нефтепродуктов на нефтебазах и нефтепродуктопроводах – 2,0%. Всего 9,5%).

Все потери нефти и нефтепродуктов классифицируются на следующие виды: количественные потери; качественно-количественные потери, при которых происходит количественная потеря с одновременными ухудшениями качества нефтепродукта, – потери от испарения; качественные потери, когда ухудшается качество нефтепродукта при неизменном количестве, – потери при недопустимом смешении.

Кроме того, следует выделить еще две группы потерь углеводородного сырья, характеризующие естественную убыль и безвозвратные потери при авариях.

Согласно «Нормам естественной убыли...» под естественной убылью понимаются потери, являющиеся следствием несовершенства существующих в данное время средств и технологии приема, хранения, отпуска и транспорта продуктов. При этом допускается лишь уменьшение количества при сохранении качества в пределах заданных требований. Естественная убыль может быть также обусловлена изменением физико-химических свойств нефтепродукта или воздействием метеорологических факторов.

Потери, вызванные нарушениями требований стандартов, технических условий, правил технической эксплуатации, хранения относят к аварийным или сверхнормативным потерям. К аварийным потерям относят также потери, вызванные природными: стихийными бедствиями или действием посторонних сил.

Нефтепродукты в зависимости от физико-химических свойств, обуславливающих их естественную убыль, распределены по восьми группам (табл. 4.13). Календарный год делится на два периода: осенне-зимний (с 1 октября по 31 марта включительно) и весенне-летний (с 1 апреля по 30 сентября включительно).

Таблица 4.13

Потери нефтепродуктов и нефти

 

Источники потерь Потери, %
В резервуарах в том числе: от «больших дыханий» от выдуваний от газового сифона при зачистке в насосных станциях с канализационными стоками В линейной части в том числе: от утечек от аварий при наливе железнодорожных цистерн 64,8   54,0 4,6 0,9 5,3 2,3 7,5 23,5   22,3 1,2   1,84

 

Сокращение нормативных и сверхнормативных потерь нефти все еще остается одной из «вечных» проблем в области транспорта и хранения. За последние годы проделана значительная работа в этом направлении, но величина потерь все еще велика. Специалисты отмечают, что она может составлять 1,5% от добываемой нефти. Эта цифра не вызывает особого удивления на современном уровне развитии технологии транспорта, хотя тридцать лет назад она также не превышала 2%. Нефть и нефтепродукты проходят сложный путь транспортировки, перевалки, хранения и распределения. Ориентировочно можно считать, что до непосредственного использования нефтепродукты подвергаются более чем 20 перевалкам, при этом 75% потерь происходит от испарения и только 25% от аварий и утечек.

В системе Госкомнефтепродукта в начале 70-х годов основная доля потерь приходилась на резервуарные парки (до 70%), причем около 65% от испарения при «малых» и «больших» дыханиях.

Потери нефтепродуктов только при наливе железнодорожных цистерн почти в 6 раз превышают потери из резервуара.

Потери от испарения при наливе нефтей и нефтепродуктов в цистерны в Великобритании оцениваются в размере 0,4¸0,6% и достигают 120000 т. год. Имеющиеся установки регенерации паров путем охлаждения, конденсации или адсорбции малоэффективны. Ведется разработка новых, более совершенных методов с использованием фильтрования через углеродную насадку. Американские аналогичные установки уже позволяют регенерировать до 95%, но эффективны только при высокой оборачиваемости резервуаров и концентрации углеводородов в паровоздушной смеси более 35%.

Проведение различных мероприятий по снижению потерь дает положительный эффект. Но даже по официальным данным видно, что потери еще очень велики. Так, из отчета Сургутского РНПУ естественная убыль нефти только за один месяц составила 3370 тонн.

В результате измерений было установлено, что газовый фактор нефти после прохождения резервуаров уменьшается в 2,5¸3 раза по сравнению со значением, которое имела нефть на входе в резервуары. Интересно отметить наличие легких углеводородов в составе нефтяного газа табл. 4.14.

Таблица 4.14

Состав нефтяного газа

 

Углеводороды Объемная доля по массе, %
СН4. 19,28
С2Н6 8,26
С3Н8 32,37
i-С4Н10 10,00
n-С4Н10 18,70
i-С5Н12 5,25
n-С5Н12 6,14

 

Особое значение аналогичные исследования могут иметь для совершенствования аварийно-восстановительных работ с точки зрения взрывопожаробезопасности их проведения, уменьшения потенциального стока нефти при нарушении герметичности нефтепровода.

Наибольшие потери нефти от испарения отмечаются в резервуарах со стационарной крышей. Величина их обычно составляет около 0,14% хранимого объема, но в ряде случаев может увеличиваться в 1,5 раза. По данным СибНИИНП в 1м3 товарных нефтей Западной Сибири содержится от 0,15 до 0,76 м3 растворенного и окклюдированного газа. При движении нефти по трубопроводам такой газ переходит в газовую фазу, образуя пробки, а попадая в резервуар, теряется в атмосферу через дыхательную арматуру.

Одним из существующих средств сокращения потерь является окраска наружной поверхности резервуаров светоотражающими красками, табл. 4.15. В случае, если температура нефти в резервуарах выше среднесуточной температуры окружающего воздуха то снижение потерь нефти от испарения от окраски резервуара светоотражающими красками практически отсутствует. Наибольшей эффективностью в сокращении потерь нефти от испарения при окраске обладает белая краска. Кроме того, сохранность белой краски на резервуарах (нитрокраски, эмали) достигает 3¸4 года, а алюминиевой – 1,5¸2 г.

Таблица 4.15

Зависимость потерь нефти от испарения в вертикальных стальных резервуарах от вида окраски их поверхности

 

Вид краски Потери из резервуара в долях единицы Сокращение потерь от вида окраски, %
1. Черная или красная (новый неокрашенный резервуар)   1,00  
2. Белая краска (МЛ - 12 ПХБ - 1) 0,46
3. Алюминиевая старая обветренная после 2¸3 лет эксплуатации   0,82  
4. Алюминиевая после 0,5¸1 года эксплуатации 0,63
5. Алюминиевая свежая со сроком эксплуатации до 0,5 года   0,56  

Диски – отражатели

Диски-отражатели могут применяться в металлических наземных и заглубленных резервуарах. Механизм сокращения потерь состоит в том, что диск-отражатель, подвешенный под монтажным патрубком дыхательного клапана, не дает струе входящего в резервуар воздуха свободно распространяться вглубь газового пространства, изменяет ее направление с вертикального на почти горизонтальное. Поэтому перемешивание паровоздушной смеси в основном происходит в слоях, примыкающих к кровле резервуара. Наиболее насыщенные слои газового пространства, расположенные у поверхности продукта, почти не участвуют в процессе конвективного перемешивания. Таким образом, диск-отражатель уменьшает концентрацию паров и потери от испарения.

По данным исследований ВНИИСПТнефть и УНИ среднегодовая эффективность дисков-отражателей для сокращения потерь составляет до 25% от потерь при «больших дыханиях» резервуаров.

Понтоны и плавающие крыши

В России выпускаются и применяются два типа понтонов:

· типовые металлические по типовому проекту серии 704 - 1 института ЦНИИПСК для резервуаров емкостью от 200 до 20000 м3;

· синтетические типа ПСМ конструкции ВНИИСПТнефть для бензиновых резервуаров плотностью от 100 до 5000 м3.

Применение указанных понтонов с петлеобразным затвором обеспечивает снижение потерь от испарения в среднем на 66% по сравнению с резервуарами без понтонов. В резервуарах, оборудованных плавающими крышами, потери от испарения снижаются на 85%.

cyberpedia.su

4 Индивидуальное задание Потери нефти и нефтепродуктов в резервуарном парке. Методы определения потерь нефти

Рисунок 1. Схема установки счетчика типа РГ на резервуаре:

1 – резервуар;2 – счетчик типа РГ;3–манометр;4 –труба жестяная;5–патрубок входной;6 – постамент;7– карман термометрический;8 – штуцер для отбора проб паровоздушной смеси;9 – пробоотборник;10– люк световой;11 – измеритель уровня;12– арматура дыхательная

Метод определения потерь нефти от испарения по изменению углеводородного состава [9].

Величина потерь нефти испарения определяется по формуле:

(3)

Где:

S– величина потерь нефти, массовые доли;

–концентрация «остатка»,т.е. того, что остаётся в обезвоженной пробе нефти, отобранной до резервуара, после испарения из неё углеводородов, массовые доли;

– концентрация «остатка» в пробе нефти, отобранной после резервуара, доли массовые.

Концентрации определяются по формуле:

(4)

(5)

Где:

–суммарные концентрации углеводородов в пробах нефтей, отобранных до и после резервуара.

Концентрации индивидуальных углеводородов в исходной нефти рассчитывают по формуле:

(6)

,

(7)

Где:

–массовая концентрация i-го углеводорода в разгазированной нефти, массовые доли;

ri,Yi–плотность и концентрация i-го углеводорода в газе, выделившемся из нефти при давлении 0,101 МПа и температуре 20 С; кг/м3 и доли мольные;

–плотность газа при давлении 0,101 МПа и температуре 20 С, кг/м3;

Г–остаточный газовый фактор, м3/кг;

Vг–объем газа, выделившегося из нефти при давлении 0,101 МПа и температуре 20 ° С, м3;

Gрн–масса пробы исследуемой разгазированной нефти, кг.

Суммарное содержание легких углеводородов в пробах нефти, отобранных до и после источника потерь, вычисляются по формулам:

(8)

,

(9)

В метеорологии ошибки измерений (прямых и косвенных) принято оценивать среднеквадратичным отклонением, выраженным в абсолютной или относительной форме. По ГОСТ 8.381 среднеквадратичное отклонение результата косвенных измерений величины, являющейся функцией х =F(Y1,Y2, ...,Yт),вычисляют по формуле:

S=

(10)

(11)

Где:

S1,S2, ...,Sm-среднеквадратичные отклонения результатов измерений величин Y1,Y2, ...,Yт.;

δС' и δС" - среднеквадратичные относительные ошибки в определении концентрации «остатков» в пробах нефти, отобранных до и после резервуара.

Среднеквадратичная относительная ошибка в определении потерь выражается формулой:

(12)

Метод применим, если разница в концентрациях остатков в пробах нефти, отобранных до и после источника потерь, больше допустимых расхождений между параллельными определениями концентрации на хроматографе по ГОСТ 13379, ГОСТ 14920.

Пример расчета технологических потерь нефти по изменению ее углеводородного состава[9].

Задача: Определить величину технологических потерь нефти по изменению ее углеводородного состава до и после резервуара, если давление в сепараторах КСУ не превышает 0,105 МПа, газовый фактор до источника потерь составляет 3 × 10-3м3/кг, после источника потерь равен нулю, плотность нефтяного газа ρ'0=1,467 кг/м3. Углеводородные составы проб нефти до и после резервуара представлены в табл. 2.

Таблица 2

Углеводородные составы проб нефти до и после резервуара

Компоненты

Содержание компонентов

до резервуара

после резервуара

в нефтяном газе, мольные доли

в дегазированной нефти, массовые доли

в нефти, массовые доли

Метан (СН4)

0,4090

-

-

Этан (С2Н6)

0,0855

0,0020

0,0015

Пропан (С3Н8)

0,3054

0,0102

0,0083

Изо-бутан ( i С4Н10)

0,0493

0,0155

0,0082

Н-бутан ( n С4Н10)

0,0935

0,0223

0,0131

Изо-пентан ( i С5Н12)

0,0236

0,0152

0,0108

Н-пентан ( n С5Н12)

0,0186

0,0165

0,0121

Гексан (С6Н14)

0,0151

0,0163

0,0159

Остаток (С7+ высш)

-

0,9020

0,9301

Итого:

1,0000

1,0000

1,0000

studfiles.net

Методы и средства снижения потерь нефти и нефтепродуктов

Задание

Задание студенту Джуманову Ильвару Фаридовичу

гр. РЭМ-441 «Потери нефтепродуктов от испарения из резервуаров. Расчет потери бензина от больших дыханий».

Задание на расчет потерь бензина.

Определить потери бензина при «большом дыхании» из резервуара РВС-5000, расположенного в г. Уфе на перевалочной нефтебазе. Диаметр резервуара Др = 22,76 м., высота Нр = 11,9 м, высота корпуса крыши hk =0,57 м, высота взрыва бензина начальная

вз =7м, высота взрыва конечная . Закачка длится t=2,5 часа, с производительностью Q=60м3 /ч. Средняя температура бензина Tср =298 К.

Время простоя резерва Тср =17,5 ч. Закачка производится днем в ясную солнечную погоду. Нагрузка дыхательных клапанов Pк.в.=196,2 Па.

Рк.д. =1362 Па. Барометрическое давление Ра=0,1013. Температура начала кипения бензина Тн.к.=319 К, плотность

, давление насыщенных паров 311 К. Географическая широта расположения резервуара ’.

СОДЕРЖАНИЕ

Введение. 4

1. Расчет потерь бензина от «большого дыхания». 6

2. Некоторые методы и средства снижения потерь нефти и нефтепродуктов. 15

2.1 Резервуары для хранения легковоспламеняющихся жидкостей (ЛВЖ) 15

2.2 Резервуары с металлическими и синтетическими понтонами. 15

2.3 Резервуары с плавающей крышей. 16

2.4 Резервуары повышенного давления. 18

2.5 Резервуары с эластичными полимерными оболочками (ПЭО) 19

2.6 Подземное и подводное хранение топлив. 19

2.7 Использование дисков - отражателей. 20

3. Техника безопасности. 22

Заключение. 23

Список литературы.. 24

Нефть и нефтепродукты проходят сложный путь транспортировки, хранения и распределения. От скважин до установки нефтеперерабатывающего завода, от завода до потребителя. При этом они подвергаются многочисленным транспортным операциям, которые сопровождаются потерями, составляющими около 9% от годовой добычи нефти. Из них 2-2,5% приходятся на потери в сфере транспорта, хранения и распределения нефтепродуктов. Эти потери подразделяются на количественные (утечки, разливы, аварии), качественно-количественные (испарение, смешение). Значительную долю в общем балансе потерь составляют потери от испарения в резервуарах и при сливо-наливных операциях.

Испарение нефти и бензинов приводит к изменению их физико-химических свойств, уменьшению выхода светлых нефтепродуктов при переработке нефти, ухудшению эксплуатационных характеристик двигателей. В связи с этим затрудняется запуск двигателей, надежность их работы, увеличивается расход топлива и сокращается срок эксплуатации. Теряемые легкие углеводороды загрязняют окружающую среду и повышают пожароопасность предприятий.

По данным исследований Всероссийского Научного исследовательского института по сбору, подготовке и транспорту нефти (ВНИИСПТ нефти), при испарении 2% по весу легких фракций автобензин октановое число снижается в среднем Na =0,4 единицы, а удельная мощность двигателя Na = 0,24-0,4%.Этому снижению октанового расхода топлива Na 0,3 – 0,36% для различных марок автобензина.

Потери нефтепродуктов на нефтебазах происходят в результате нарушения правил технической эксплуатации сооружений и технологического оборудования. Эти потери (от утечек, смешения, загрязнения, обводнения, неслитого остатка и др.) должна быть полностью ликвидирована или уменьшена путем повышения технического уровня эксплуатации, проведения организационно-технических и профилактических мероприятий.

Одним из основных видов потерь нефти и нефтепродуктов являются потери от «больших дыханий» резервуаров при закачке продукции. «Зеркало» нефтепродуктов при этом как торец поршня в поршневом насосе поднимается вверх и, снимая газовое пространство резервуара, заставляет открыться тарелкам механических дыханий клапанов. Ниже представлен расчет потерь бензина от «большого дыхания» РВС-5000.

1. Определим площадь зеркала бензина

(1)

где dр – внутренний диаметр резервуара, м.

dр =22,76 м.

2. Найдем высоту газового пространства после закачки бензина.

Нг1 =Нр -Нвз +

, м (2)

где Hр - высота резервуара, м. Hр =11,9м.

Нвз = высота взрыва после закачки бензина, м.

Нвз =11м.

- объем, ограничиваемый поверхностью крыши и плоскостью, проходящей через верхний срез цилиндрической части резервуара (для вертикальных цилиндрических резервуаров с конической крышей, здесь hk – высота конуса крыши, м.) , м (3)

3. Абсолютное давление в газовом пространстве резервуара до закачка Рр =101325Па

4. Находим высоту газового пространства резервуара до закачки с учетом конуса крыши.

(4)

где

- высота взлива бензина конечная, м. =11м. - высота взлива бензина начальная, м. =7м. =5,09м.

5. Найдем объем газового пространства резервуара

, м3 (5)

где fб - площадь зеркала бензина, м2

6. Найдем отношение абсолютного давления газового пространства резервуара к средней температуре бензина

(6)

7. По графику (рис.1.) для определения плотности бензиновых паров, исходя из уравнения состязания

(7)

найдем плотность паров бензина, где р1 – абсолютное давление в газовом пространстве, Па

Рис.1. График для определения плотности бензиновых паров

М- молярная масса паров бензина, кг/моль;

- универсальная газовая постоянная, Дж/(моль∙К) =8314,3 Дж/(моль∙К)

Т – средняя температура бензина, Тпср = 298 К.

8. По формуле Воинова находим молярную массу бензиновых паров

(8)

где Тп =Тн.к -30К (9)

где Тн.к – температура начала кипения бензина, К

Тн.к = 319К,

Тогда Тн =319-3=289К.

Подставляем значение Тн в формулу (8)

М = 52,629-0,246∙289+0,001∙2892 =65,056 кг/моль

9. Подставляя данные в формулу (7), получим:

10. Находим суммарное время до окончания закачки бензина

, (10)

где fпр - время простоя резервуара до закачки,

fпр =17,5г

f3 - время закачки резервуара,

f3 =2,5 часа

f=17,5+2,5=20часов

11. Найдем прирост средней относительной концентрации в газовом пространстве резервуара за время простоя

, (табл 25 [2]) , где Сs – концентрация бензиновых паров на линии насыщения. (для =20часов при солнечной погоде) (11)

12. Вычислим скорость выхода паровоздушной смеси через 2 дыхательных клапана типа НДКМ-200

, (11)

где Q – производительность закачка, м3 /ч

Q=60м3 /м3 ,

d – диаметр (внутренний) дыхательного клапана НДКМ-200, d=200мм = 0,2м.

2 – число дыхательных клапанов.

13. Произведем нахождение величины

- прироста средней относительной концентрации в газовом пространстве резервуара за время выкачки бензина (по графику24 [2]), рис.3.

mirznanii.com

Потери нефти и нефтепродуктов при эксплуатации резервуарных парков

⇐ ПредыдущаяСтр 14 из 17Следующая ⇒

Важной задачей при эксплуатации резервуарных парков является сохранение качества и количества продукта. Это требует обеспечения максимальной герметизации всех процессов слива, налива и хранения. Основная доля потерь от испарения на протяжении всего пути движения нефти от промысла до нефтеперерабатывающих заводов, на самих заводах и нефтепродуктов от заводов до потребителей приходится на резервуары (по отраслям нефтяной промышленности количественные безвозвратные потери распределяются следующим образом: потери на нефтепромыслах – 4,0%; на нефтеперерабатывающих заводах – 3,5%; при транспорте и хранении нефти и нефтепродуктов на нефтебазах и нефтепродуктопроводах – 2,0%. Всего 9,5%).

Все потери нефти и нефтепродуктов классифицируются на следующие виды: количественные потери; качественно-количественные потери, при которых происходит количественная потеря с одновременными ухудшениями качества нефтепродукта, – потери от испарения; качественные потери, когда ухудшается качество нефтепродукта при неизменном количестве, – потери при недопустимом смешении.

Кроме того, следует выделить еще две группы потерь углеводородного сырья, характеризующие естественную убыль и безвозвратные потери при авариях.

Согласно «Нормам естественной убыли...» под естественной убылью понимаются потери, являющиеся следствием несовершенства существующих в данное время средств и технологии приема, хранения, отпуска и транспорта продуктов. При этом допускается лишь уменьшение количества при сохранении качества в пределах заданных требований. Естественная убыль может быть также обусловлена изменением физико-химических свойств нефтепродукта или воздействием метеорологических факторов.

Потери, вызванные нарушениями требований стандартов, технических условий, правил технической эксплуатации, хранения относят к аварийным или сверхнормативным потерям. К аварийным потерям относят также потери, вызванные природными: стихийными бедствиями или действием посторонних сил.

Нефтепродукты в зависимости от физико-химических свойств, обуславливающих их естественную убыль, распределены по восьми группам (табл. 4.13). Календарный год делится на два периода: осенне-зимний (с 1 октября по 31 марта включительно) и весенне-летний (с 1 апреля по 30 сентября включительно).

Сокращение нормативных и сверхнормативных потерь нефти все еще остается одной из «вечных» проблем в области транспорта и хранения. За последние годы проделана значительная работа в этом направлении, но величина потерь все еще велика. Специалисты отмечают, что она может составлять 1,5% от добываемой нефти. Эта цифра не вызывает особого удивления на современном уровне развитии технологии транспорта, хотя тридцать лет назад она также не превышала 2%. Нефть и нефтепродукты проходят сложный путь транспортировки, перевалки, хранения и распределения. Ориентировочно можно считать, что до непосредственного использования нефтепродукты подвергаются более чем 20 перевалкам, при этом 75% потерь происходит от испарения и только 25% от аварий и утечек.

Таблица 4.13

Потери нефтепродуктов и нефти

Источники потерь Потери, %
В резервуарах в том числе: от «больших дыханий» от выдуваний от газового сифона При зачистке В насосных станциях С канализационными стоками В линейной части в том числе: от утечек от аварий При наливе железнодорожных цистерн 64,8 54,0 4,6 0,9 5,3 2,3 7,5 23,5 22,3 1,2 1,84

В системе Госкомнефтепродукта в начале 70-х годов основная доля потерь приходилась на резервуарные парки (до 70%), причем около 65% от испарения при «малых» и «больших» дыханиях.

Потери нефтепродуктов только при наливе железнодорожных цистерн почти в 6 раз превышают потери из резервуара.

Потери от испарения при наливе нефтей и нефтепродуктов в цистерны в Великобритании оцениваются в размере 0,4¸0,6% и достигают 120 тыс. т. год. Имеющиеся установки регенерации паров путем охлаждения, конденсации или адсорбции малоэффективны. Ведется разработка новых, более совершенных методов с использованием фильтрования через углеродную насадку. Американские аналогичные установки уже позволяют регенери-ровать до 95%, но эффективны только при высокой оборачиваемости резер-вуаров и концентрации углеводородов в паровоздушной смеси более 35%.

Проведение различных мероприятий по снижению потерь дает положительный эффект. Но даже по официальным данным видно, что потери еще очень велики. Так, из отчета Сургутского РНПУ естественная убыль нефти только за один месяц составила 3370 тонн.

В результате измерений было установлено, что газовый фактор нефти после прохождения резервуаров уменьшается в 2,5¸3 раза по сравнению со значением, которое имела нефть на входе в резервуары. Интересно отметить наличие легких углеводородов в составе нефтяного газа табл. 4.14.

Особое значение аналогичные исследования могут иметь для совершенствования аварийно-восстановительных работ с точки зрения взрывопожаробезопасности их проведения, уменьшения потенциального стока нефти при нарушении герметичности нефтепровода.

Наибольшие потери нефти от испарения отмечаются в резервуарах со стационарной крышей. Величина их обычно составляет около 0,14% хранимого объема, но в ряде случаев может увеличиваться в 1,5 раза. По данным СибНИИНП в 1м3 товарных нефтей Западной Сибири содержится от 0,15 до 0,76 м3 растворенного и окклюдированного газа. При движении нефти по трубопроводам такой газ переходит в газовую фазу, образуя пробки, а попадая в резервуар, теряется в атмосферу через дыхательную арматуру.

Таблица 4.14

Состав нефтяного газа

Углеводороды Объемная доля по массе, %
СН4. 19,28
С2Н6 8,26
С3Н8 32,37
i-С4Н10 10,00
n-С4Н10 18,70
i-С5Н12 5,25
n-С5Н12 6,14

Одним из существующих средств сокращения потерь является окраска наружной поверхности резервуаров светоотражающими красками, табл. 4.15. В случае, если температура нефти в резервуарах выше среднесуточной температуры окружающего воздуха то снижение потерь нефти от испарения от окраски резервуара светоотражающими красками практически отсутствует. Наибольшей эффективностью в сокращении потерь нефти от испарения при окраске обладает белая краска. Кроме того, сохранность белой краски на ре-зервуарах (нитрокраски, эмали) достигает 3¸4 года, а алюминиевой – 1,5¸2 г.

Таблица 4.15

Зависимость потерь нефти от испарения в вертикальных стальных резервуарах от вида окраски их поверхности

Вид краски Потери из резер-вуара в долях единицы Сокращение потерь от вида окраски, %
1. Черная или красная (новый неокрашенный резервуар) 1,00
2. Белая краска (МЛ – 12, ПХБ - 1) 0,46
3. Алюминиевая старая обветренная после 2¸3 лет эксплуатации 0,82
4. Алюминиевая после 0,5¸1 года эксплуатации 0,63
5. Алюминиевая свежая с эксплуатацией до 0,5 года 0,56

Диски – отражатели

Диски-отражатели могут применяться в металлических наземных и за-глубленных резервуарах. Механизм сокращения потерь состоит в том, что диск-отражатель, подвешенный под монтажным патрубком дыхательного кла-пана, не дает струе входящего в резервуар воздуха свободно распространяться вглубь газового пространства, изменяет ее направление с вертикального на по-чти горизонтальное. Поэтому перемешивание паровоздушной смеси в основ-ном происходит в слоях, примыкающих к кровле резервуара. Наиболее насы-щенные слои газового пространства, расположенные у поверхности продукта, почти не участвуют в процессе конвективного перемешивания. Таким образом, диск-отражатель уменьшает концентрацию паров и потери от испарения.

По данным исследований ВНИИСПТнефть и УНИ среднегодовая эффективность дисков-отражателей для сокращения потерь составляет до 25% от потерь при «больших дыханиях» резервуаров.

©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.

arhivinfo.ru

ПОТЕРИ НЕФТИ И НЕФТЕПРОДУКТОВ. КЛАССИФИКАЦИЯ ПОТЕРЬ — МегаЛекции

Потери нефтепродуктов наносят большой вред народному хозяйству, поэтому борьба с потерями - актуальная задача. Поте­ри происходят (рис. 11.1) от утечек, испарения, смешения раз­личных сортов нефтепродуктов. Примерно 75 % потерь происхо­дит от испарения.

Потери от утечек происходят через неплотности резер­вуаров, трубопроводов, задвижек, при случайном разливе и т.д. и предотвращаются проведением профилактических ремонтов и специальных мероприятий.

Потери от смешения происходят при последовательной перекачке нескольких нефтепродуктов и при случайном их сме­шении в резервуарах.

Потери от испарения. В резервуаре, имеющем некоторое количество продукта, газовое пространство заполнено паровоздушной смесью.

Рис. 11.1. Типичные источники потерь на нефтеперерабатывающем заводе:

1 — сгорание газа в факелах; 2 — испарение из резервуаров; 3 — утечки в задвижках, линиях, насосах и т.д.; 4 — потери нефти в стоке нефтеперерабатывающего завода; 5 — испарения в ловуш­ке-водоотделителе; 6 — потери при погрузке железнодорожных цистерн и автоцистерн; 7 — смешение бензина

 

Количество нефтепродукта в этой паровоздуш­ной смеси

G = c ·p ·V,

где с — объемная концентрация паров нефтепродукта в паровоз­душной смеси; р - плотность паров продукта; V — объем газо­вого пространства.

Всякое выталкивание паровоздушной смеси из газового пространства резервуара в атмосферу сопровождается потерями нефтепродукта — это и есть потери от испарения. Они происхо­дят по следующим причинам:

1) Потери от вентиляции газового пространства.Если в крыше резервуара имеются в двух местах отверстия, располо­женные на некотором расстоянии Н по вертикали, то более тяже­лые бензиновые пары будут выходить через нижнее отверстие, а атмосферный воздух будет входить через верхнее отверстие; ус­тановится естественная циркуляция воздуха и бензиновых паров в резервуаре, образуются так называемые газовые сифоны.Объ­емная потеря газа в единицу времени работы газового сифона оп­ределяется по уравнению

 

где μ— коэффициент расхода отверстия; F — площадь отвер­стия; Р — давление, под которым происходит истечение; оно равно разности весов столбов высотой Н паровоздушной смеси плотностью рси воздуха плотностью рв:

P = H ·(pc · pe)· g.

Потери от вентиляции могут происходить через открытые люки резервуаров путем простого выдувания бензиновых паров ветром. Поэтому люки необходимо тщательно герметизировать.

2) Потери от больших дыханий— от вытеснения паров нефтепродуктов из газового пространства закачиваемым нефте­продуктом. Нефтепродукт, поступая в резервуар, сжимает паро­воздушную смесь до давления, на которое установлена арматура. Как только давление станет равным расчетному давлению дыха­тельного клапана, из резервуара будут выходить пары нефтепро­дукта, начнется «большое дыхание» («выдох»).

При откачке нефтепродукта из резервуара происходит об­ратное явление: как только вакуум в резервуаре станет равным вакууму, на который установлен дыхательный клапан, в газовое пространство начнет входить атмосферный воздух — происходит «вдох» резервуара.

3) Потери от «обратного выдоха».Вошедший в резервуар воздух начнет насыщаться парами нефтепродукта; количество га­зов в резервуаре будет увеличиваться; поэтому по окончании«вдоха», спустя некоторое время из резервуара может произойти «обратный выдох» - выход насыщающейся газовой смеси.

4) Потери от насыщения газового пространства.Если в пустой резервуар, содержащий только воздух, залить небольшое количество нефтепродукта, последний начнет испаряться и на­сыщать газовое пространство. Паровоздушная смесь будет увеличиваться в объеме, и часть ее может уйти из резервуара - про­изойдут потери от насыщения.

5) Потери от малых дыханийпроисходят в результате следующих причин:

а) из-за повышения температуры газового пространства в дневное время (при нагреве солнечными лучами). Паровоздуш­ная смесь стремится расшириться, концентрация паров нефте­продукта повышается, давление растет. Когда давление в резер­вуаре станет равным давлению, на которое установлен дыхатель­ный клапан, он открывается и из резервуара начинает выходить паровоздушная смесь — происходит «выдох». В ночное время из-за снижения температуры часть паров конденсируется, паровоз­душная смесь сжимается, в газовом пространстве создается ваку­ум, дыхательный клапан открывается и в резервуар входит атмо­сферный воздух — происходит «вдох»;

6) из-за снижения атмосферного давления. При этом раз­ность давлений в газовом пространстве резервуара и атмосферно­го может превысить перепад давлений, на который установлендыхательный клапан, он откроется и произойдет «выдох» (барометрические малые дыхания). При повышении атмосферного давления может произойти «вдох».

megalektsii.ru


Смотрите также