Основные методы увеличения нефтеотдачи пластов (стр. 2 из 4). Повышение нефти отдачи пластов


Основные методы увеличения нефтеотдачи пластов

Нефтяной вал вытесняет (собирает) только нефть, пропуская через себя воду. В зоне нефтяного вала скорость фильтрации нефти больше скорости фильтрации воды. Мицеллярный раствор, следующий за водяным валом, увлекает отставшую от нефтяного вала нефть и вытесняет воду с полнотой, зависящей от межфазного натяжения на контакте с водой. Такой механизм процессов фильтрации жидкости наблюдается во время вытеснения остаточной (неподвижной) нефти из заводненной однородной пористой среды.

Микробиологическое воздействие – это технологии, основанные на биологических процессах, в которых используются микробные объекты. В течение процесса закачанные в пласт микроорганизмы метаболизируют углеводороды нефти и выделяют полезные продукты жизнедеятельности:

• спирты, растворители и слабые кислоты, которые приводят к уменьшению вязкости, понижению температуры текучести нефти, а также удаляют парафины и включения тяжелой нефти из пористых пород, увеличивая проницаемость последних; • биополимеры, которые, растворяясь в воде, повышают ее плотность, облегчают извлечение нефти при использовании технологии заводнения; • биологические поверхностно-активные вещества, которые делают поверхность нефти более скользкой, уменьшая трение о породы;• газы, которые увеличивают давление внутри пласта и помогают подвигать нефть к стволу скважины.

3.4. Гидродинамические МУН

Гидродинамические методы при заводнении позволяют интенсифицировать текущую добычу нефти, увеличивать степень извлечения нефти, а также уменьшать объемы прокачиваемой через пласты воды и снижать текущую обводненность добываемой жидкости

Интегрированные технологии. Интегрированные технологии выделяются в отдельную группу и не относятся к обычному заводнению водой с целью поддержания пластового давления. Эти методы направлены на выборочную интенсификацию добычи нефти.

Прирост добычи достигается путем организации вертикальных перетоков в слоисто-неоднородном пласте через малопроницаемые перемычки из низкопроницаемых слоев в высокопроницаемые на основе специального режима нестационарного воздействия

Барьерное заводнение на газонефтяных залежах. Эксплуатация газонефтяных месторождений осложняется возможными прорывами газа к забоям добывающих скважин, что вследствие высокого газового фактора значительно усложняет их эксплуатацию. Суть барьерного заводнения состоит в том, что нагнетательные скважины располагают в зоне газонефтяного контакта. Закачку воды и отборы газа и нефти регулируют таким образом, чтобы исключить взаимные перетоки нефти в газовую часть залежи, а газа – в нефтяную часть.

Нестационарное (циклическое) заводнение. Суть метода циклического воздействия и изменения направления потоков жидкости заключается в том, что в пластах, обладающих неоднородностью по размерам пор, проницаемости слоев, пропластков, зон, участков и неравномерной их нефтенасыщенностью (заводненностью), вызванной этими видами неоднородности, а также отбором нефти и нагнетанием воды через дискретные точки – скважины, искусственно создается нестационарное давление. Оно достигается изменением объемов нагнетания воды в скважины или отбора жидкости из скважин в определенном порядке путем их периодического повышения или снижения.

В результате такого нестационарного, изменяющегося во времени воздействия на пласты в них периодически проходят волны повышения и понижения давления. Слои, зоны и участки малой проницаемости, насыщенные нефтью, располагаются в пластах бессистемно, обладают низкой пьезопроводностью, а скорости распространения давления в них значительно ниже, чем в высокопроницаемых насыщенных слоях, зонах, участках. Поэтому между нефтенасыщенными и заводненными зонами возникают различные по знаку перепады давления. При повышении давления в пласте, то есть при увеличении объема нагнетания воды или снижения отбора жидкости, возникают положительные перепады давления: в заводненных зонах давление выше, а в нефтенасыщенных – ниже.

При снижении давления в пласте, то есть при уменьшении объема нагнетаемой воды или повышении отбора жидкости, возникают отрицательные перепады давления: в нефтенасыщенных зонах давление выше, а в заводненных – ниже. Под действием знакопеременных перепадов давления происходит перераспределение жидкостей в неравномерно насыщенном пласте.

Форсированный отбор жидкости применяется на поздней стадии разработки, когда обводненность достигает более 75%. При этом нефтеотдача возрастает вследствие увеличения градиента давления и скорости фильтрации. При этом методе вовлекаются в разработку участки пласта, не охваченные заводнением, а также отрыв пленочной нефти с поверхности породы.

3.5. Методы увеличения дебита скважин

Гидравлический разрыв пласта. При гидравлическом разрыве пласта (ГРП) происходит создание трещин в горных породах, прилегающих к скважине, за счет давления на забое скважины в результате закачки в породы вязкой жидкости. При ГРП в скважину закачивается вязкая жидкость с таким расходом, который обеспечивает создание на забое скважины давления, достаточного для образования трещин.

Трещины, образующиеся при ГРП, имеют вертикальную и горизонтальную ориентацию. Протяженность трещин достигает нескольких десятков метров, ширина – от нескольких миллиметров до сантиметров. После образования трещин в скважину закачивают смесь вязкой жидкости с твердыми частичками – для предотвращения смыкания трещин под действием горного давления. ГРП проводится в низкопроницаемых пластах, где отдельные зоны и пропластки не вовлекаются в активную разработку, что снижает нефтеотдачу объекта в целом. При проведении ГРП создаваемые трещины, пересекая слабодренируемые зоны и пропластки, обеспечивают их выработку, нефть фильтруется из пласта в трещину гидроразрыва и по трещине к скважине, тем самым увеличивая нефтеотдачу.

Горизонтальные скважины. Технология повышения нефтеотдачи пластов методом строительства горизонтальных скважин зарекомендовала себя в связи с увеличением количества нерентабельных скважин с малодебитной или обводненной продукцией и бездействующих аварийных скважин по мере перехода к более поздним стадиям разработки месторождений, когда обводнение продукции или падение пластовых давлений на многих разрабатываемых участках (особенно в литологически неоднородных зонах нефтеносных пластов с трудноизвлекаемыми запасами) опережает выработку запасов при существующей плотности сетки скважин. Увеличение нефтеотдачи происходит за счет обеспечения большей площади контакта продуктивного пласта со стволом скважины.

Электромагнитное воздействие. Метод основан на использовании внутренних источников тепла, возникающих при воздействии на пласт высокочастотного электромагнитного поля. Зона воздействия определяется способом создания (в одной скважине или между несколькими), напряжения и частоты электромагнитного поля, а также электрическими свойствами пласта. Помимо тепловых эффектов электромагнитное воздействие приводит к деэмульсации нефти, снижению температуры начала кристаллизации парафина и появлению дополнительных градиентов давления за счет силового воздействия электромагнитного поля на пластовую жидкость.

Волновое воздействие на пласт. Известно множество способов волнового и термоволнового (вибрационного, ударного, импульсного, термоакустического) воздействия на нефтяной пласт или на его призабойную зону.

Основная цель технологии – ввести в разработку низкопроницаемые изолированные зоны продуктивного пласта, слабо реагирующие на воздействие системы ППД, путем воздействия на них упругими волнами, затухающими в высокопроницаемых участках пласта, но распространяющимися на значительное расстояние и с достаточной интенсивностью, чтобы возбуждать низкопроницаемые участки пласта.

Применением таких методов можно достичь заметной интенсификации фильтрационных процессов в пластах и повышения их нефтеотдачи в широком диапазоне амплитудно-частотной характеристики режимов воздействия.

При этом положительный эффект волнового воздействия обнаруживается как в непосредственно обрабатываемой скважине, так и в отдельных случаях, при соответствующих режимах обработки проявляется в скважинах, отстоящих от источника импульсов давления на сотни и более метров.

То есть при волновой обработке пластов принципиально можно реализовать механизмы как локального, так и дальнего площадного воздействия.

Все вышеперечисленные методы характеризуются различной потенциальной возможностью увеличения нефтеотдачи пластов.

Заключение

Согласно обобщенным данным при применении современных методов увеличения нефтеотдачи, КИН составляет 30–70%, в то время как при первичных способах разработки (с использованием потенциала пластовой энергии) – в среднем не выше 20–25%, а при вторичных способах (заводнении и закачке газа для поддержания пластовой энергии) – 25–35%. МУН позволяют нарастить мировые извлекаемые запасы нефти в 1,4 раза, то есть до 65 млрд. тонн. Среднее значение указанного коэффициента к 2020 году благодаря им увеличится с 35% до 50% с перспективой дальнейшего роста. Если в 1986 году добыча нефти за счет МУН составляла в мире около 77 млн. тонн, то в настоящее время она увеличилась до 110 млн. тонн. Всего, по данным Oil and Gas Journal, к 2006 году в мире, за исключением стран СНГ, реализовывался 301 проект по внедрению МУН. Отметим также, что, по оценкам специалистов, использование современных методов увеличения нефтеотдачи приводит к существенному увеличению КИН. А повышение КИН, например, лишь на 1% в целом по России позволит добывать дополнительно до 30 млн. тонн в год.

mirznanii.com

Основные методы увеличения нефтеотдачи пластов

Пароциклические обработки скважин. Циклическое нагнетание пара в пласты, или пароциклические обработки добывающих скважин, осуществляют периодическим прямым нагнетанием пара в нефтяной пласт через добывающие скважины, некоторой выдержкой их в закрытом состоянии и последующей эксплуатацией тех же скважин для отбора из пласта нефти с пониженной вязкостью и сконденсированного пара. Цель этой технологии заключается в том, чтобы прогреть пласт и нефть в призабойных зонах добывающих скважин, снизить вязкость нефти, повысить давление, облегчить условия фильтрации и увеличить приток нефти к скважинам.

Механизм процессов, происходящих в пласте, довольно сложный и сопровождается теми же явлениями, что и вытеснение нефти паром, но дополнительно происходит противоточная капиллярная фильтрация, перераспределение в микронеоднородной среде нефти и воды (конденсата) во время выдержки без отбора жидкости из скважин. При нагнетании пара в пласт он, естественно, внедряется в наиболее проницаемые слои и крупные поры пласта. Во время выдержки в прогретой зоне пласта происходит активное перераспределение насыщенности за счет капиллярных сил: горячий конденсат вытесняет, замещает маловязкую нефть из мелких пор и слабопроницаемых линз (слоев) в крупные поры и высокопроницаемые слои, то есть меняется с ней местами.

Именно такое перераспределение насыщенности пласта нефтью и конденсатом и является физической основой процесса извлечения нефти при помощи пароциклического воздействия на пласты. Без капиллярного обмена нефтью и конденсатом эффект от пароциклического воздействия был бы минимальным и исчерпывался бы за первый цикл.

3.2. Газовые МУН

Закачка воздуха в пласт. Метод основан на закачке воздуха в пласт и его трансформации в эффективные вытесняющие агенты за счет низкотемпературных внутрипластовых окислительных процессов. В результате низкотемпературного окисления непосредственно в пласте вырабатывается высокоэффективный газовый агент, содержащий азот углекислый газ и ШФЛУ (широкие фракции легких углеводородов).

К преимуществам метода можно отнести:

– использование недорого агента – воздуха;– использование природной энергетики пласта – повышенной пластовой температуры (свыше 60–70o С) для самопроизвольного инициирования внутрипластовых окислительных процессов и формирования высокоэффективного вытесняющего агента.

Быстрое инициирование активных внутрипластовых окислительных процессов является одним из важнейших следствий использования энергетики пласта для организации закачки воздуха на месторождениях легкой нефти. Интенсивность окислительных реакций довольно быстро возрастает с увеличением температуры.

Воздействие на пласт двуокисью углерода. Двуокись углерода растворяется в воде гораздо лучше углеводородных газов. Растворимость двуокиси углерода в воде увеличивается с повышением давления и уменьшается с повышением температуры.

При растворении в воде двуокиси углерода вязкость ее несколько увеличивается. Однако это увеличение незначительно. При массовом содержании в воде 3–5% двуокиси углерода вязкость ее увеличивается лишь на 20–30%. Образующаяся при растворении СО2 в воде угольная кислота Н2 CO3 растворяет некоторые виды цемента и породы пласта и повышает проницаемость. В присутствии двуокиси углерода снижается набухаемость глиняных частиц. Двуокись углерода растворяется в нефти в четыре-десять раз лучше, чем в воде, поэтому она может переходить из водного раствора в нефть. Во время перехода межфазное натяжение между ними становится очень низким, и вытеснение приближается к смешивающемуся.

Двуокись углерода в воде способствует отмыву пленочной нефти, покрывающей зерна и породы, и уменьшает возможность разрыва водной пленки. Вследствие этого капли нефти при малом межфазном натяжении свободно перемещаются в поровых каналах и фазовая проницаемость нефти увеличивается.

При растворении в нефти СО2 вязкость нефти уменьшается, плотность повышается, а объем значительно увеличивается: нефть как бы набухает.

Увеличение объема нефти в 1,5–1,7 раза при растворении в ней СО2 вносит особенно большой вклад в повышение нефтеотдачи пластов при разработке месторождений, содержащих маловязкие нефти. При вытеснении высоковязких нефтей основной фактор, увеличивающий коэффициент вытеснения, – уменьшение вязкости нефти при растворении в ней CO2 . Вязкость нефти снижается тем сильнее, чем больше ее начальное значение.

При пластовом давлении выше давления полного смешивания пластовой нефти с CO2 двуокись углерода будет вытеснять нефть, как обычный растворитель (смешивающее вытеснение). Тогда в пласте образуются три зоны: зона первоначальной пластовой нефти, переходная зона (от свойств первоначальной нефти до свойств закачиваемого агента) и зона чистого СО2 . Если СО2 нагнетается в заводненную залежь, то перед зоной СО2 формируется вал нефти, вытесняющий пластовую воду.

Увеличение объема нефти под воздействием растворяющегося в нем СО2 наряду с изменением вязкости жидкостей (уменьшением вязкости нефти и увеличением вязкости воды) – один из основных факторов, определяющих эффективность его применения в процессах добычи нефти и извлечения ее из заводненных пластов.

Воздействие на пласт азотом, дымовыми газами и др. Метод основан на горении твердых порохов в жидкости без каких-либо герметичных камер или защитных оболочек. Он сочетает тепловое воздействие с механическим и химическим, а именно:

а) образующиеся газы горения под давлением (до 100 МПа) вытесняют из ствола в пласт жидкость, которая расширяет естественные и создает новые трещины; б) нагретые (180–250°С) пороховые газы, проникая в пласт, расплавляют парафин, смолы и асфальтены; в) газообразные продукты горения состоят в основном из хлористого водорода и углекислого газа; хлористый водород при наличии воды образует слабоконцентрированный солянокислотный раствор. Углекислый газ, растворяясь в нефти, снижает ее вязкость, поверхностное натяжение и увеличивает продуктивность скважины.

3.3. Химические МУН

Химические МУН применяются для дополнительного извлечения нефти из сильно истощенных, заводненных нефтеносных пластов с рассеянной, нерегулярной нефтенасыщенностью.

Объектами применения являются залежи с низкой вязкостью нефти (не более 10 мПа*с), низкой соленостью воды, продуктивные пласты представлены карбонатными коллекторами с низкой проницаемостью.

Вытеснение нефти водными растворами ПАВ. Заводнение водными растворами поверхностно-активных веществ (ПАВ) направлено на снижение поверхностного натяжения на границе «нефть – вода», увеличение подвижности нефти и улучшение вытеснения ее водой. За счет улучшения смачиваемости породы водой она впитывается в поры, занятые нефтью, равномернее движется по пласту и лучше вытесняет нефть.

Вытеснение нефти растворами полимеров. Полимерное заводнение заключается в том, что в воде растворяется высокомолекулярный химический реагент – полимер (полиакриламид), обладающий способностью даже при малых концентрациях существенно повышать вязкость воды, снижать ее подвижность и за счет этого повышать охват пластов заводнением.

Основное и самое простое свойство полимеров заключается в загущении воды. Это приводит к такому же уменьшению соотношения вязкостей нефти и воды в пласте и сокращению условий прорыва воды, обусловленных различием вязкостей или неоднородностью пласта.

Кроме того, полимерные растворы, обладая повышенной вязкостью, лучше вытесняют не только нефть, но и связанную пластовую воду из пористой среды. Поэтому они вступают во взаимодействие со скелетом пористой среды, то есть породой и цементирующим веществом. Это вызывает адсорбцию молекул полимеров, которые выпадают из раствора на поверхность пористой среды и перекрывают каналы или ухудшают фильтрацию в них воды. Полимерный раствор предпочтительно поступает в высокопроницаемые слои, и за счет этих двух эффектов – повышения вязкости раствора и снижения проводимости среды – происходит существенное уменьшение динамической неоднородности потоков жидкости и, как следствие, повышение охвата пластов заводнением.

Вытеснение нефти щелочными растворами. Метод щелочного заводнения нефтяных пластов основан на взаимодействии щелочей с пластовыми нефтью и породой. При контакте щелочи с нефтью происходит ее взаимодействие с органическими кислотами, в результате чего образуются поверхностно-активные вещества, снижающие межфазное натяжение на границе раздела фаз «нефть – раствор щелочи» и увеличивающие смачиваемость породы водой. Применение растворов щелочей – один из самых эффективных способов уменьшения контактного угла смачивания породы водой, то есть гидрофилизации пористой среды, что приводит к повышению коэффициента вытеснения нефти водой.

Вытеснение нефти композициями химических реагентов (в том числе мицеллярные растворы). Мицеллярные растворы представляют собой прозрачные и полупрозрачные жидкости. Они в основном однородные и устойчивые к фазовому разделению, в то время как эмульсии нефти в воде или воды в нефти не являются прозрачными, разнородны по строению глобул и обладают фазовой неустойчивостью.

Механизм вытеснения нефти мицеллярными растворами определяется их физико-химическими свойствами. В силу того что межфазное натяжение между раствором и пластовыми жидкостями (нефтью и водой) очень низкое, раствор, устраняя действие капиллярных сил, вытесняет нефть и воду. При рассеянной остаточной нефтенасыщенности заводненной пористой среды перед фронтом вытеснения мицеллярным раствором разрозненные глобулы нефти сливаются в непрерывную фазу, накапливается вал нефти – зона повышенной нефтенасыщенности, а за ней – зона повышенной водонасыщенности.

mirznanii.com

Повышение нефтеотдачи пластов. Лекция 13

ЛЕКЦИЯ 13

ПОВЫШЕНИЕ НЕФТЕОТДАЧИ ПЛАСТОВ

 

1. Методы увеличения извлекаемых запасов

Увеличение нефтеотдачи пластов - сложная проблема, для решения которой используется опыт, накопленный во всех областях нефтепромыслового дела. На первом месте, безусловно, стоит правильная расстановка скважин на залежи с учетом геологического строения пластов и осуществление регулирования процесса заводнения на основании регулярных гидродинамических исследований скважин. Эффективность эксплуатации залежи улучшается в результате воздействия на призабойные зоны пласта с целью увеличения дебитов и выравнивания профиля притока нефти и газа, а также приемистости нагнетательных скважин, если такие имеются для искусственного поддержания пластового давления. Эффективность заводнения может существенно повыситься, если в нагнетаемую воду добавлять химические реагенты, способствующие более полному вытеснению нефти из недр. Все вторичные и третичные методы повышения нефтеотдачи основаны на использовании тех или иных физических закономерностей, о которых говорилось в предыдущих лекциях.

В зависимости от условий залегания нефтей, их свойств и состава. а также исходя из экономической целесообразности применяют различные технологии добычи углеводородного сырья. Из наиболее известных технологий можно назвать закачку в пласт теплоносителя для снижения вязкости нефти. Эту же цель преследуют, нагнетая в пласты сжиженные газы, являющиеся растворителями нефти. Явление обратного испарения и конденсации тяжелых углеводородов в газовой среде используется для разработки технологии закачки в залежь газов высокого давления, что способствует переводу части нефтяных фракций в паровую фазу.

Для выравнивания подвижности воды и вытесняемой нефти в пласты нагнетают загушенную воду. Для повышения нефтеотдачи используют пены, стабилизированные поверхностно-активными веществами, подвижные очаги горения. Исследуются ультразвуковые, вибрационные, электрические методы воздействия на прискважинные зоны пласта.

 

2. Моющие и нефтевытесняющие свойства вод

Заводнение залежей является основным способом увеличения эффективности эксплуатации нефтяных месторождений. Но даже при всей его эффективности в недрах остается более половины запасов нефти. Одним из способов повышения эффективности заводнения может быть нагнетание в залежь вод, обладающих высокими вытесняющими свойствами. В соответствии с современными представлениями механизм моющего действия веществ применительно к отмывке углеводородов от минералов определяется их способностью улучшать смачивающие свойства вод, уменьшать их поверхностное натяжение на границе с нефтью и другими поверхностями. Они должны быть разрушителями суспензий и эмульсий и т.д.

В зависимости от строения и свойств пород пласта, а также состояния жидкостей в пористой среде параметры вытесняющей жидкости, влияющие на нефтевытесняющие свойства, могут быть неодинаковы. Если, например, нефть в пласте находится в рассеянном состоянии, то лучшими вытесняющими свойствами в этом случае будет обладать вода, характеризующаяся низкими значениями поверхностного натяжения на границе с нефтью и хорошо смачивающая породу. 

При заводнении трещиноватых коллекторов целесообразно использовать воды с высокими величинами натяжения смачивания (s×CosQ), способные под действием капиллярных сил интенсивно впитываться в блоки породы, разбитой трещинами. 

Однако процессы впитывания воды в нефтенасыщенные породы сопровождаются образованием водо-нефтяных смесей отрицательно влияющих на нефтеотдачу из-за нарушения сплошности нефтяной фазы. Менее интенсивно такие смеси образуются при нагнетании в неоднородные пласты вод, обладающих низкими значениями (s×CosQ). Если это так, то в условиях нейтральной (промежуточной) смачиваемости, когда угол смачивания близок к 90°, а s имеет минимальные значения, коэффициент нефтеотдачи должен увеличиваться. Такие воды обладают плохими моющими свойствами, но их вытесняющая способность наиболее высока. В этом отношении следует отдавать предпочтение пластовым водам, добываемым попутно с нефтью, и закачивать их обратно в пласты после соответствующей подготовки. Пресные воды, используемые для поддержания пластового давления, лучше смачивают поверхность породы и образуют более стойкие эмульсии на контакте с нефтью. Кроме того, они способствуют набуханию глинистого цемента, входящего в состав терригенных коллекторов и уменьшению объема порового пространства. Правда некоторые ученые считают, что при этом происходит отжатие нефти из сжимающегося канала фильтрации, но судя по результатах лабораторных экспериментов, приведенным в их работах, это не так. Гораздо проще объяснить полученный эффект простым перераспределением фильтрационных потоков за счет изменения структуры каналов фильтрации.

В терригенных коллекторах месторождений Удмуртии, где содержание глинистого вещества незначительно (0-5%), снижение проницаемости при фильтрации пресных и слабоминерализованных вод связано с увеличением толщины слоя рыхло связанной воды у поверхности каналов фильтрации. При изменении газопроницаемости пород от 0,2 до 0,9 мкм2 относительное снижение проницаемости для пресной воды по сравнению с минерализованной составляет в среднем 55%, изменяясь от 34 до 75%. 

Близкие цифры изменения проницаемости для пресной воды по отношению к пластовой (в среднем 46% при диапазоне изменения от 29 до 67%) получены в ходе экспериментов на песчаниках месторождений Башкирии, характеризующихся газопроницаемостью от 0,3 до 0,9 мкм2.

Проведенные исследования свидетельствуют о снижении проницаемости кварцевых алевритистых песчаников, содержащих незначительное количество глинистого цемента, за счет изменения химического состава нагнетаемой воды, оказывающего влияние на толщину диффузного слоя связанной (рыхлосвязанной) воды на поверхности каналов фильтрации. По мере опреснения воды, фильтрующейся в пористой среде, толщина этого слоя увеличивается в соответствии с (1), что приводит к снижению проницаемости. С повышением минерализации нагнетаемой воды проницаемость породы вновь увеличивается. Контрольные измерения газопроницаемости, сделанные после проведения исследований, показали, что никаких структурных изменений в строении порового пространства пород не произошло, и их абсолютная проницаемость не изменилась. Точнее, отклонение составило в среднем ± 7,5% , что в пределах погрешности оценки проницаемости в лабораторных условиях.

Проведенные исследования свидетельствуют о снижении проницаемости кварцевых алевритистых песчаников, содержащих незначительное количество глинистого цемента, за счет    ,                                      (1)

где Dh - изменение толщины слоя связанной воды;

a - степень диссоциации электролита;

n - число ионов, на которые распадается молекула электролита;

m - вязкость жидкости;

r - радиус ионов;

К - постоянная Больцмана;

Т - абсолютная температура;

m - масса ионов;

С1 и С2 - мольные концентрации солей в пластовой и нагнетаемой воде.

Механизм процесса, вызывающего изменение водопроницаемости пористой среды, связан с катионным обменом на поверхности глинистых частиц, входящих в состав цемента породы. При этом возможны два вида взаимодействия раствора с минералами. В первом случае, когда фильтруются растворы, содержащие те же катионы, что и поглощенный глинистым веществом комплекс, катионный обмен практически отсутствует. Состав поглощенного минералами комплекса не меняется, и изменение толщины диффузного слоя определяется преимущественно различием концентраций солей в нагнетаемой и пластовой (связанной) воде.

Во втором случае изменение проницаемости будет определяться видом катионов, поступающих или вымывающихся из поглощенного комплекса и различием концентраций пластовой воды и нагнетаемой жидкости. Наибольшие изменения проницаемости наблюдаются в случае преобладания в поглощенном комплексе катионов натрия.

 

№ образца

Проницаемость, мкм2

Относительное снижение проницаемости,

 

для р-ра NaCl

для пресной воды

%

1878

0,230

0,096

58

1879

0,136

0,034

75

1881

0,018/ 0,012

0,013 / 0,0073

34

1883

0,131

0,046

65

1883а

0,014

0,006

57

3806

0,045 / 0,058

0,023 / 0,038

42

Среднее

 

 

55

Примечание: в знаменателе указаны значения проницаемости  во втором цикле нагнетания минерализованной и пресной воды.

        

В связи с этим для восстановления приемистости нагнетательных скважин, разрабатывающих залежи в терригенных коллекторах, для поддержания пластового давления целесообразно использовать воду, имеющую минерализацию и химический состав близкий к составу пластовой воды. 

Более того, для улучшения фильтрационных характеристик пластов для закачиваемых вод можно добавлять в них компоненты, содержащие хлоридные соли многовалентных металлов (например, AlCl2, FeCl3) или сульфатные (например, Na2SO4, K2SO4), или нитратные (например, NaNO3, KNO3) добавки, способствующие уменьшению толщины слоя рыхлосвязанной воды и повышению проницаемости пород.

 

3. Обработка воды поверхностно-активными веществами

Необходимых изменений поверхностных и смачивающих свойств жидкостей и характеристик поверхностей раздела фаз в пористой среде можно добиться с помощью добавок к воде поверхностно-активных веществ (ПАВ).

Молекулы большинства ПАВ состоят из длинных гидрофобных углеводородных цепей с низким остаточным сродством на одном конце и гидрофильных полярных групп с высоким сродством на другом. По химическому признаку все ПАВ разделяются на анионо-активные, катионо-активные и неионогенные вещества. Если углеводородная часть молекулы ионогенного ПАВ входит в состав аниона, образующегося в водном растворе, соединение относится к анионо-активным веществам.  Соответственно катионо-активные вещества образуют в водных растворах катионы, содержащие длинные цепи углеводородных радикалов. В неионогенных веществах не содержатся неионизирующиеся гидрофильные конечные группы. Поверхностная активность этих веществ обусловлена своеобразным строением их молекул, которые имеют асимметричную (дифильную) структуру, состоящую из полярных и неполярных групп. Неполярной и нерастворимой в воде частью молекулы являются гидрофобный алкильный, арильный или алкиларильный радикал, а полярную водорастворимую группу представляет полиэтиленгликолевый или пропиленгликолевый остаток.

Распространенным неионогенным ПАВ является ОП-10 на который лет пятнадцать - двадцать назад возлагались огромные надежды. Примером катионо-активного ПАВ является карбозолин О, который используется для гидрофобизации песчаников. К анионо-активным относятся: сульфонол  НП-1, НП-3, сульфонаты и др.

В лабораторных условиях испытывалось влияние на нефтеотдачу различных химических добавок. В настоящее время уже почти всем стало ясно, что универсального средства для увеличения нефтеотдачи не существует. Один и тот же реагент в разных условиях ведет себя по-разному. В таблице приведены результаты лабораторных исследований различных реагентов, используемых для повышения нефтеотдачи пластов в условиях месторождений Урало-Поволжья. Эти исследования проводили в ПермНИПИнефть, БашНИПИнефть, УдмуртНИПИнефть, Гипровосток.

 

Технология (оторочки растворов хим. реагентов без детализации по модификациям)

Относительный прирост коэффициента нефтевытеснения

 

Диапазон изменения

Среднее

Неионогенные ПАВ(типа ОП-10)

с начала процесса заводнения

 при доотмыве остаточной нефти

 

0 - 0,11        

0 - 0,12

 

0,055

0,019

Анионактивные ПАВ(в карбонатах)

0 - 0,34

0,156

То же (в терригенных породах)

0 - 0,13

0,044

Щелочи и композиции на их основе

0 - 0,38

0,155

Полимеры

0 - 0,28

0,113

Углекислота

0,05 - 0,28

0,122

 

Из таблицы видно, что любая технология может оказаться вообще неэффективной в тех или иных условиях, в то же время другая может дать положительный эффект. Ярким примером являются анионо-активные ПАВ, которые в терригенных коллекторах практически неэффективны, тогда как в карбонатах дают весьма ощутимые приросты коэффициента нефтевытеснения.

Поверхностно-активные вещества в различной степени адсорбируются поверхностью пород. Количественное соотношение между удельной адсорбцией Г в поверхностном слое, изменением поверхностного натяжения с концентрацией растворенного вещества Формула 2  и концентрацией С устанавливается уравнением Гиббса

Поверхностно-активные вещества в различной степени адсорбируются поверхностью пород. Количественное соотношение между удельной адсорбцией Г в поверхностном  ,

где R - универсальная газовая постоянная

Т - абсолютная температура.

Величину Формула 4, характеризующую способность растворенного вещества понижать поверхностное натяжение раствора, принято называть поверхностной активностью

Величину , характеризующую способность растворенного вещества понижать поверхностное натяжение раствора, принято называть поверхностной активностью

Величину поверхностной активности можно определить по изотерме адсорбции Г=f(C) и зависимости поверхностного натяжения от концентрации растворенного вещества s=f(C).

 Величину поверхностной активности можно определить по изотерме адсорбции Г=f(C) и зависимости поверхностного натяжения от концентрации растворенного

 

 

 

 

Вначале поверхностное натяжение быстро падает, а по мере заполнения поверхностного слоя адсорбируемыми молекулами изменение s с увеличением концентрации ПАВ уменьшается и когда адсорбция достигает постоянного значения, соответствующего полному насыщению слоя молекулами ПАВ, прекращается. Поэтому поверхностную активность ПАВ оценивают величиной

Вначале поверхностное натяжение быстро падает, а по мере заполнения поверхностного слоя адсорбируемыми молекулами изменение s с

т.е. начальным значением G0  при концентрации ПАВ, стремящейся к нулю. В системе СИ единицами измерения поверхностной активности являются Н×м2/кмоль.

1 мН×м2/кмоль=1Гиббс=1Дин/см/(моль/дм3)

Наиболее подходящими для обработки нагнетаемых вод считаются ПАВ, значительно снижающие поверхностное натяжение на границе с нефтью при небольших концентрациях, улучшающие смачиваемость поверхности породы, малоадсорбирующиеся на ней и разрушающие водонефтяные эмульсии. Кроме того, они должны быть дешевыми, полностью растворимыми в пресной и пластовой воде, устойчивыми по отношению к солям пластовых вод. Лучшими показателями обычно обладают смеси различных ПАВ. В связи с этим основной задачей лабораторных исследований становится подбор наилучших композиций для конкретных условий залегания нефти. Огромный объем исследований требует больших затрат времени и средств и поэтому мало где реализуется в полной мере.

Применение ПАВ в промышленных объемах для увеличения нефтеотдачи встречает значительные трудности вследствие адсорбции их огромной поверхностью каналов фильтрации. Следует, однако, учитывать, что в результате фильтрации воды вслед за оторочкой раствора химреагента происходит частичная десорбция вещества, и перенос его в другие части пласта. 

С другой стороны, если бы адсорбция не происходила, тогда и механизм действия ПАВ не мог бы реализоваться в полной мере. Известны  результаты исследований эффективности полимерного заводнения с использованием веществ, понижающих адсорбцию активного реагента на поверхности породы, свидетельствующие об отсутствии технологического эффекта.

 

4. Щелочное заводнение

Растворы щелочей нагнетают в пласты в виде оторочек, продвигаемых пресной водой. Механизм действия щелочных оторочек связан с образованием поверхностно-активных веществ в результате взаимодействия щелочи с нефтью, приводящим к снижению поверхностного натяжения на границе раствора с нефтью, гидрофилизации поверхности пород (терригенных в большей степени).  За счет эмульгирования нефти создаются дополнительные гидродинамические сопротивления, способствующие увеличению микро- и макроохвата пласта заводнением. В настоящее время проводятся промысловые испытания щелочного заводнения и его модификаций, выражающихся  в создании смесей щелочей с различными типами ПАВ, термощелочное заводнение и др. Эффективность щелочного заводнения тесно связана с активностью нефтей, зависящей от содержания в них кислотных компонентов, реагирующих со щелочами. Чем более активны нефти, тем сильнее снижается поверхностное натяжение на их границе с раствором щелочи.

 

5. Полимерное заводнение

Загущение воды путем добавки к ней водорастворимых полимеров преследует цель выровнять фронт вытеснения за счет устранения или снижения вязкостной неустойчивости и предотвращения преждевременного прорыва нагнетаемой воды в добывающие скважины. При этом реализуется основное свойство полимерных растворов сопротивляться усилию, которое прилагается к ним. 

Чем выше скорость фильтрации раствора полимера при прочих равных условиях, тем выше фактор сопротивления. Величина фактора сопротивления определяется отношением подвижности раствора полимера к подвижности воды. Другим важным показателем вероятной эффективности метода является остаточный фактор сопротивления, который определяется после промывки пористой среды водой и десорбции или разрушения закачанного ранее полимера. В связи с тем, что в реальных условиях полимерное заводнение малоэффективно из-за резкого снижения скоростей фильтрации по мере удаления оторочки от нагнетательной скважины, в чистом виде технологию нигде не используют. Ее применяют в сочетании с нагнетанием композиций химреагентов с саморегулирующейся вязкостью. Такие реагенты снижают свою вязкость при контакте с нефтью и повышают ее при контакте с водой, что позволяет наиболее эффективно вытеснять нефть в реальных условиях залегания углеводородов, когда геологическое строение и коллекторские свойства пород резко изменяются в пределах залежи.

 

6. Применение углекислоты для увеличения  нефтеотдачи пластов

Углекислый газ, растворенный в воде или введенный в пласт в жидком виде, благоприятно воздействует на физико-химические свойства нефти, воды и коллектора, что способствует увеличению нефтеотдачи пластов.

СО2-бесцветный газ тяжелее воздуха с относительной плотностью 1,529. Критическая температура 31,1°С; критическое давление-7,29 МПа; критическая плотность-468 кг/м3. При температуре 20°С под давлением 5,85 МПа превращается в бесцветную жидкость с плотностью 770 кг/м3. При сильном охлаждении СО2 застывает в белую снегообразную массу с плотностью 1650 кг/м3, которая возгоняется при температуре -78,5°С и атмосферном давлении. Поверхностное натяжение жидкого углекислого газа снижается с ростом температуры.

 

Температура, °С

-52

0

+20

+25

Поверхностное натяжение, мДж/м2

16,54

4,62

1,37

0,59

 

Растворимость углекислого газа в воде с увеличением давления быстро возрастает. Повышение температуры и минерализации воды сопровождается уменьшением растворимости СО2. С увеличением концентрации углекислого газа вязкость воды возрастает. Например, при температуре 20°С и давлении 11,7 МПа вязкость карбонизированной воды равна 1,21 мПа×с. Растворимость углекислого газа в нефтях является функцией давления, температуры, молекулярной массы и состава нефти. С уменьшением молекулярной массы углеводородов растворимость СО2 в них возрастает. С очень легкими нефтями СО2 смешивается полностью при давлениях 5,6-7 МПа. Тяжелые нефти в жидкой углекислоте растворяются не полностью. Нерастворимый остаток состоит из смол, парафинов и других тяжелых углеводородов. С увеличением соотношения объема жидкой углекислоты к объему нефти в смеси растворимость нефти возрастает.

Для увеличения нефтеотдачи углекислый газ в сжиженном виде нагнетается в виде оторочки и проталкивается карбонизированной водой. При этом происходит взаимное растворение углекислоты в нефти и углеводородов в жидком углекислом газе с соответствующими изменениями их свойств. Вязкость нефти уменьшается, а ее объем увеличивается, снижается поверхностное натяжение на границе нефти с  водой. Например, увеличение объема Арланской нефти при концентрации СО2, равной 25% по массе, достигает 30% при температуре 24°С и давлении 12 МПа, а вязкость ее уменьшается с 13,7 мПа×с до 2,3 мПа×с.  Значительная экстракция легких углеводородов из нефти наблюдается при температуре и давлении выше критических для СО2 и поэтому процесс сходен с процессом ретроградного испарения легких фракций нефти в фазу, обогащенную углекислым газом.

По результатам лабораторных исследований при объеме оторочки жидкой углекислоты 4-5% от объема пор, нефтеотдача возрастает более чем на 50% по сравнению с обычным заводнением. Нагнетание карбонизированной воды позволяет при благоприятных условиях увеличить коэффициент нефтевытеснения относительно обычного заводнения почти на 30%. Углекислый газ является эффективным средством увеличения нефтеотдачи  карбонатных и терригенных пластов в которых пластовое давление составляет 5,6 МПа и более, а температура изменяется в пределах     24 -71°С. Положительное влияние углекислоты на нефтеотдачу является также следствием активного химического взаимодействия ее с породой. В результате такого взаимодействия проницаемость породы может увеличиться. Под воздействием углекислоты повышается кислотность глинистых минералов, что способствует их сжатию и предотвращает набухание. Промышленные опыты по закачке СО2 в продуктивные пласты дали обнадеживающие результаты.

 

7. Термические способы увеличения нефтеотдачи

Впервые опыты по тепловому воздействию на пласт в России были начаты в 30-е годы. При нагнетании в пласт горячей воды повышение температуры вызывает понижение вязкости нефти, изменение молекулярно-поверхностных сил, расширение нефти и горных пород, улучшение смачивающих свойств воды. В начале процесса горячая вода, нагнетаемая в пласт, быстро отдает тепло породе, остывает до пластовой температуры и поэтому между вытесняемой нефтью и последующими порциями теплоносителя образуется зона остывшей воды. 

Следовательно, нефть практически вытесняется водой, имеющей пластовую температуру. Влияние теплоносителя на эффективность вытеснения нефти начинает сказываться в более поздний водный период разработки залежи. 

Движение горячей воды в пласте сопровождается уменьшением фильтрационных сопротивлений в прогретой зоне. Улучшается смачиваемость поверхности, возрастают интенсивность и роль капиллярного перераспределения жидкостей.  

Если уменьшение вязкости нефти способствует увеличению нефтеотдачи, то интенсификация капиллярных процессов на фронте вытеснения может оказать существенное отрицательное влияние на нефтеотдачу. Эти явления могут возникать при низкой температуре теплоносителя в пласте (до 80-85°С).

Если в пласт нагнетается перегретый водяной пар, то нагрев пласта вначале происходит за счет теплоты перегрева. При этом температура снижается до температуры насыщенного пара т.е. до точки кипения воды в пластовых условиях. Далее на нагрев пласта расходуется скрытая теплота парообразования и затем пар конденсируется. В этой зоне температура пароводяной смеси и пласта будут равны температуре насыщенного пара до тех пор, пока вся скрытая теплота парообразования не будет израсходована. Затем пласт будет нагреваться за счет температуры горячей воды до тех пор, пока ее температура не упадет до начальной пластовой.

Другим методом термовоздействия является осуществление процесса внутрипластового горения. Вытеснение нефти происходит горячими газообразными продуктами  сгорания части нефти, нагретой водой и паром. Суммарный результат воздействия движущегося очага горения в пласте складывается из многочисленных эффектов, способствующих увеличению нефтеотдачи. 

В первую очередь выделяются легкие углеводороды, конденсирующиеся в ненагретой зоне пласта впереди фронта горения и уменьшающие вязкость нефти. Затем конденсирующаяся влага образует зону повышенной водонасыщенности; происходит термическое расширение жидкостей и пород, увеличиваются проницаемость и пористость за счет растворения цементирующих материалов; углекислый газ, образующийся при горении, растворяется в воде и в нефти, повышая их подвижность; тяжелые остатки нефти подвергаются пиролизу и крекингу, что увеличивает выход углеводородов из пласта.

Успешному осуществлению процесса способствует равномерность распределения нефти в пласте, высокая проницаемость и пористость пород. Более устойчивые очаги горения возникают в пластах, содержащих тяжелые нефти, обладающие повышенным содержанием коксового остатка. Повышенная водонасыщенность пласта затрудняет течение процесса. Тепловая волна, образующаяся при горении, характеризуется температурной кривой, имеющей два ниспадающих крыла с максимумом между ними, соответствующим температуре очага горения. По лабораторным данным ее величина достигает 550-600 °С. Фронтальное крыло температурной кривой возникает в процессе горения кокса и частично нефти вследствие распространения тепла конвективным его переносом продуктами горения и конденсации паров углеводородов и воды за счет теплопроводности. После движущегося очага горения остается нагретая порода, постепенно охлаждающаяся движущимся здесь окислителем. По данным лабораторных экспериментов длина тепловой волны достигает нескольких десятков сантиметров. Скорость движения волны зависит от плотности потока окислителя и концентрации в нем кислорода и может изменяться от единиц до десятков метров в сутки. Считается, что при осуществлении описанной технологии нефтеотдача может достигать 70-85%.

 

8. Вытеснение нефти из пласта растворителями

Основой механизма вытеснения нефти растворителями является отсутствие поверхностного натяжения на границе раздела с нефтью, которой, в сущности, нет. Растворитель, например, пропан проталкивается более дешевым агентом. При движении оторочки растворителя она размывается с одного края нефтью, а с другого - вытесняющим агентом. Степень перемешивания жидкости характеризуется коэффициентом дисперсии D, который называют коэффициентом конвективной диффузии или коэффициентом перемешивания. Этот коэффициент зависит от скорости движения и на несколько порядков может превосходить коэффициент молекулярной диффузии. Большое влияние на процесс оказывает различие плотностей нефти и растворителя вследствие искривления поверхности контактов и образования гравитационных языков. Оптимальный размер оторочки, необходимой для сохранения ее сплошности до подхода фронта вытеснения к эксплуатационным скважинам, для различных условий следует определять специальными исследованиями, учитывающими специфику залежи. На практике размеры оторочек растворителя колеблются от 4 до 12% от объема пор.

Большое влияние на эффективность процесса оказывает состав нефти и насыщенность порового пространства различными фазами. При наличии свободного газа в нефтяной части пласта процесс замедляется вследствие смешивания пропана с газом и ухудшения его качеств как растворителя. Значительное снижение эффективности процесса наблюдается при большом количестве воды в пористой среде. 

Вода блокирует часть нефти, которая при этом теряет контакт с жидким пропаном. В таких условиях можно применять растворители, смешивающиеся и с водой, и с нефть, например, спирты. Вслед за оторочкой наиболее рационально нагнетать в пласт газ, хорошо растворяющийся в растворителе. 

Если оторочка продвигается по пласту газом, то в качестве растворителя обычно используются сжиженные пропан-бутановые смеси и другие более тяжелые углеводороды. 

Состав растворителя необходимо выбирать так, чтобы наблюдалась неограниченная взаимная растворимость оторочки в нефти и газе. При этом условии в пористой среде не возникают границы раздела фаз и вытеснение нефти осуществляется более эффективно. Для осуществления смесимого вытеснения нефти оторочкой необходимо выбрать такой состав углеводородов растворителя, при котором они в пластовых условиях находятся в жидком состоянии.

9. Вытеснение нефти газом высокого давления

По данным опытов при некоторых весьма высоких давлениях в газе растворяются почти все компоненты нефти, за исключением смолистых и других тяжелых ее составляющих. Добывая затем этот газ, в котором содержатся пары нефти  или ее компонентов, на поверхности можно получить конденсат, выпадающий при снижении давления. Таким образом, сущность метода заключается в искусственном превращении месторождения в газоконденсатное. Практически эту технологию трудно осуществить, т.к. для растворения всей нефти требуются очень высокие давления (70-100 МПа) и огромные объемы газа (до 3000 м3 в нормальных условиях для растворения 1 м3 нефти). 

Давления обратного испарения значительно уменьшаются, если в составе нагнетаемого газа содержатся тяжелые углеводородные газы - этан, пропан или углекислота. Но объем требующегося газа остается высоким. Процесс можно значительно упростить и удешевить, если извлекать наиболее летучие фракции нефти. Для этого следует нагнетать меньшие объемы сухого газа при более низких давлениях по сравнению с давлением, необходимым для полного растворения нефти. 

Опытами установлено, что в процессе нагнетания в модель пласта, содержащего легкие нефти, газов высокого давления нефтеотдача бывает большей, чем должна быть только при обратном испарении фракций нефти.  

Движущийся по пласту газ постепенно обогащается этаном и более тяжелыми углеводородами, а метан, встречаясь со свежими порциями нефти, имеющими давление насыщения ниже давления нагнетаемого газа, растворяется в нефти. Газ, содержащий значительное количество тяжелых углеводородов, уже при сравнительно небольших давлениях и температурах полностью смешивается с нефтью. Нефтеотдача при этом высокая, т.к. процесс становится близким к тому, который наблюдается при вытеснении нефти жидким растворителем.

        

wudger.ru


Смотрите также