Эффективность применения противотурбулентных присадок при перекачке газового конденсата по магистральному трубопроводу. Противотурбулентные присадки для нефти


Поставка противотурбулентных присадок

СЕРИЯ НАИМЕНОВАНИЕ ПРОДУКТА ПОЗИЦИОНИРОВАНИЕ НАЗНАЧЕНИЕ Противотурбулентная присадка «M-FLOWTREAT» Классическая ПТП для нефти, ДТ, конденсата Снижение давления, увеличение пропускной способности нефте-, нефтепродукто- и конденсатопроводов Присадка для снижения гидравлического трения «СНИТРЕН» ПТП для газа Снижение давления, увеличение пропускной способности газопроводов Присадка комплексного действия «IC-FLOW» Продукт комплексного действия: ПТП + ингибитор коррозии Снижение давления, увеличение пропускной способности трубопроводов и защита от коррозии Регенты для борьбы с асфальтосмолопарафиновыми отложениями серии Dewaxol   Dewaxol 7201 Ингибитор АСПО Предотвращение образования АСПО Dewaxol 7315 Депрессорная присадка Понижение температуры застывания (снижение низкотемпературной вязкости углеводородов) Dewaxol 7504 Диспергатор парафиноотложений Удаления АСПО в скважинах, нефтепроводах, резервуарах, нефтепромысловом оборудовании Dewaxol 7604 Растворитель АСПО Промывка нефтепроводов, скважинного и нефтепромыслового оборудования от отложений АСПО Химические продукты серии MR     MR-1055 Продукт комплексного действия со свойствами депрессора, диспергатора, ингибитора АСПО Защита оборудования и трубопроводов от отложений, снижение низкотемпературной вязкости и температуры застывания углеводородного сырья. MR-1077 Продукт комплексного действия со свойствами деэмульгатора, депрессора, диспергатора, ингибитора АСПО Обеспечение эффективного трубопроводного транспорта водонефтяных эмульсий, осложнённых отложениями АСПО и высокой температурой застывания MR-1088 Продукт комплексного действия со свойствами ПТП и ингибитора парафиноотложений Повышение пропускной способности трубопроводов за счёт снижения гидравлического трения при одновременном поддержании эффективного диаметра трубопровода, обусловленного защитой от образования АСПО на его внутренней поверхности, а также снижения вязкости транспортируемого сырья. Ингибиторы гидратообразований серии Hydranox     Hydranox 8001 Ингибитор гидратообразования комплексного действия Борьба с газовыми гидратами в системах сбора и в промысловой обработке газа и нефти, в процессе обработки газоконденсатных скважин, газопроводов и насосов для перекачки сырого газа    Hydranox 8004 Ингибитор гидратообразования кинетического действия Hydranox 8008 Ингибитор гидратообразования термодинамического действия

www.mirrico.ru

Эффективность применения противотурбулентных присадок при перекачке газового конденсата по магистральному трубопроводу

Статья посвящена вопросам эффективности применения противотурбулентных присадок при перекачке газоконденсата, описаны механизм действия присадки, факторы, обуславливающие эффективность ее применения. Авторы обосновывают преимущества использования противотурбулентных присадок.

Ключевые слова: противотурбулентная присадка, гидравлическое сопротивление, газоконденсат, деструкция, турбулизация, экономия энeргозатрат.

 

В Западной территории Казахстана разрабатывается месторождение Карачаганак. Карачаганакское месторождение является одним из крупнейших нефтегазоконденсатных месторождений в мире. Трубопровод «Карачаганак — Атырау» соединяет Карачаганакский Перерабатывающий Комплекс с населенным пунктом БольшойЧаган (1 секция) и далее до НПС «Атырау» (2 секция), где производится его подключение к трубопроводу КТК. Данная транспортная система длиной 635,5 км является экспортным трубопроводом, поставляющий газовый конденсат.

Проблему повышения производительности трубопроводного транспорта можно решить увеличением мощности силовых установок, используемых на насосных станциях. Однако это обуславливается техническими трудностями и большими объёмами капиталовложений. Поэтому снижение гидродинамических затрат при перекачке нефти и конденсата, приводящие к увеличению производительности трубопровода при тех же мощностях силовых установок, представляет значительный интерес.

Потери напора на трение являются основной причиной затрат электроэнергии на перекачку жидкостей и газов по трубопроводам. Они обусловлены силами внутреннего трения между слоями движущейся жидкости. И в ламинарном и в турбулентном потоке происходит диссипация (рассеивание) механической энергии упорядоченного движения и переход ее в энергию хаотичного движения частиц жидкости. Для турбулентных течений этот переход носит многостадийных характер.

Механическая энергия движения переходит сначала в энергию крупномасштабных вихрей турбулизованной среды, затем в энергию пульсационного движения мелкомасштабных вихрей и, наконец, за счет сил вязкости — в тепловую энергию жидкости. Поэтому важной задачей является вмешательство в структуру турбулентных течений с целью снижения потерь энергии.

Противотурбулентные присадки — высокомолекулярные полимерные вещества, позволяющие уменьшить коэффициент гидравлического сопротивления перекачиваемой при турбулентном режиме жидкости.

В настоящее время областью применения противотурбулентных присадок являются трубопроводные системы с ограничением по пропускной способности или по давлению.

Их использование позволяет экономить капиталовложения, необходимые для строительства лупингов или дополнительных насосных станций. Применение противотурбулентных присадок при заданном расходе дает возможность снизить рабочее давление в трубопроводе, а это — повышение эксплуатационной надежности и экономия затрат на перекачки.

Принцип действия противотурбулентных присадок основан на эффекте Б. А. Томса [3], проявляющегося при введении в турбулентный поток жидкости очень малых количеств высокомолекулярных полимеров.

Пропускная способность страдает также при добыче и перекачке тяжелых, высоковязких нефтей. Увеличиваются энергозатраты на подъем и дальнейшую транспортировку жидкости, возможна полная остановка потока при застывании продукции.

Однако даже в отсутствие перечисленных выше факторов пропускная способность нефтепроводов и нефтепродуктопроводов может в ряде случаев значительно снижаться за счет турбулизации потока безводной нефти, вызывающей резкий рост гидравлического сопротивления и повышение энергозатрат. Применение специальных противотурбулентных присадок (ПТП) позволяет увеличить объем прокачки и снизить рабочее давление на большинстве трубопроводов, транспортирующих нефть и в том числе газовый конденсат в турбулентном режиме.

Как правило, турбулизация потока жидкости в трубопроводе возникает при определенных условиях. В первую очередь это плотность и вязкость перекачиваемой жидкости. Чем ниже плотность и вязкость углеводородной фазы, тем проще потоку перейти из ламинарного в турбулентный режим, что и происходит при перекачке легких нефтей и нефтепродуктов.

Во-вторых, важную роль играют объем перекачиваемой жидкости и скорость движения потока. Чем выше объем и скорость потока, тем выше число Рейнольдса.

И, наконец, характеристики самого трубопровода. Основной фактор в данном случае — это диаметр трубопровода: чем он меньше, тем больше вероятность турбулизации потока.

При наличии условий турбулизации потока (например, при перекачке газового конденсата по трубам недостаточного диаметра с большим расходным коэффициентом) в пристеночной области возникают пульсации, направленные не вдоль потока, а преимущественно перпендикулярно ему. Когда ламинарное течение переходит в турбулентное, резко возрастает дополнительное гидравлическое сопротивление (до 80 % от общего), что требует повышенных затрат энергии на перекачку.

При выборе противотурбулентной присадки необходимо принимать во внимание такие ее эксплуатационные характеристики как товарная форма, деструкция в турбулентном потоке, скорость растворения в нефтяных системах и ее эффективность.

Для снижения гидравлического сопротивления турбулентного потока нефти используются два типа товарных форм противотурбулентных присадок — гелеобразные и дисперсионные.

В присадках первого типа высокомолекулярный полимер растворен в углеводородном растворителе. Это такие присадки, как CDR-102, Виол, FLО (Бейкер Пайплайн Продактс) и Necаdd-547 (АО «Фортум Ойл энд Гэз»).

В дисперсионных присадках Liquid Pоwer (Коноко Спешиалити Продактс Инк.), M-FLОWTREАT (ООО «Миррико Ceрвиc»), FLО XL (Бейкер Пайплайн Продактс) и Necаdd-447 (АО «Фортум Ойл энд Гэз») гидравлически активная часть находится в виде суспензии на водной или углеводородной основе. Такая товарная форма позволяет получить добавки с большим содержанием полимера (до 25 %). Однако в их состав входят стабилизаторы и другие химические добавки (10–15 %).

В качестве ПТП применяют карбоцепные полимеры (полиметилметакрилаты, полиметоакрилаты, поли-α-олефины, полибутадиены, полистиролы) молекулярной массой более 106, которые при вводе в нефть в количестве 10–50 г/т уменьшают турбулентность потока, что снижает гидравлическое сопротивление нефтепровода. Эффективность присадки определяется природой молекулярной массой полимера эксплуатационными параметрами работы трубопровода (скоростью течения, диаметром трубопровода, температурой и вязкостью нефти и др.) [1].

При экcплуатации магиcтральных трубопроводов рeшаeтcя задача по опрeдeлeнию эффeктивноcти противотурбулeнтной приcадки в завиcимоcти от ee концeнтрации. В качестве ПТП предлагается выбрать M-FLОWTREАT, как наиболее приемлемую в условиях эксплуатации трубопроводной системы.

В уcловиях промышлeнного примeнeния ПТП «M-FLОWTREАT» ee эффeктивноcть (отноcитeльноe cнижeниe турбулeнтного cопротивлeния) опрeдeляeтcя по формулe [2]:

гдe ,  — коэффициeнты гидравличecкого cопротивлeния потока c приcадкой и бeз нee (базовый рeжим соответственно)

Риc. 1. Завиcимоcть cнижeния cопротивлeния потока кондeнcата от концeнтрации приcадки «М-FLОWTREАT»

Риc. 2. Графичecкоe опрeдeлeниe эффeктивноcти противотурбулeнтной приcадки «М-FLОWTREАT»

 

Таким образом, без технологии введения ПТП не обойтись как минимум в трех случаях. Во-первых, при перекачке газоконденсата на предпиковых и пиковых уровнях добычи природного газа. В данном случае применение противотурбулентных присадок дает существенную экономию капитальных затрат за счет отказа от строительства дополнительных трубопроводов, мощности которых не будут востребованы после прохождения пика добычи.

Во-вторых, при перекачке газоконденсата по магистральным трубопроводам. Применение противотурбулентных присадок дает экономию энергозатрат для перекачки больших объемов газоконденсата.

И в-третьих, при перекачке газоконденсата по промысловым трубопроводам, эксплуатирующимся на предельном давлении. Применение противотурбулентных присадок для снижения рабочего давления снижает риск наступления аварии и экологических катастроф, а также предотвращает потери газоконденсата.

 

Литература:

 

1.                  Прохоров, А. А. Подбор наилучшей эмпирической зависимости/ А. А. Прохоров //Тезисы докладов на 53ой Межвузовской студенческой научной конференции «Нефть и Газ-99». М. — 1999. — с.23.

2.                  Результаты применения противотурбулентной присадки «M-FLОWTREАT» при трубопроводном транспорте газового конденсата / А. Г. Егоров, К. А. Лосев, Ю. В. Сулейманова и др. //Транспорт и хранение нефтепродуктов и углеводородного сырья. — 2013. –№ 1. — С.34–35

3.                  Муратова В. И. Оценка влияния противотурбулентных присадок на гидравлическую эффективность нефтепродуктопроводов: автореф. дисс. — Уфа, 2014. — 23 с.

4.                  Прохоров, А. А. Оптимизация режимов перекачки дизельных топлив с антифрикционными полимерными присадками/А. А. Прохоров //Тезисы докладов 56 межвузовской студенческой научной конференции. М., РГУ нефти и газа им. И. М. Губкина. М. — 2002.- С.26.

moluch.ru

Противотурбулентная присадка - Большая Энциклопедия Нефти и Газа, статья, страница 3

Противотурбулентная присадка

Cтраница 3

Практическая ценность результатов этой главы определяется разработанной методикой оценки эффективности применения противотурбулентных присадок на магистральных нефтепродуктопроводах.  [31]

Создана научно-методическая база для решения технологических и технико-экономических аспектов транспорта нефтепродуктов с использованием противотурбулентных присадок, в частности: получены функциональные зависимости параметра гидравлической эффективности от концентрации противотурбулентных присадок; предложен балансовый метод диагностики утечек из магистральных нефте - и нефтепродуктопроводов с самотечными участками, основанный на использовании методологии статистической обработки данных, определяющих как с помощью обычного и характерного для любого трубопровода набора датчиков давления, температуры и расхода, так и целевого оснащения трубопровода перспективными средствами измерения расхода, например, высокоточными накладными ультразвуковыми расходомерами; разработана математическая модель и предложен алгоритм расчета системы перепуска отключенных резервных ниток подводных переходов магистральных нефтепродуктопроводов, позволяющие наряду с изменением температуры окружающей среды учитывать протяженность и размеры перепускной линии, нестационарность и начальные условия процесса сброса давления в отключенных нитках.  [32]

Эффективным методом уменьшения гидравлического сопротивления трубопроводов за счет гашения турбулентных пульсаций является применение противотурбулентных присадок.  [33]

Методы и средства повышения эффективности эксплуатации и поддержания надежности трубопроводов на основе прогнозирования работоспособности и безопасности применения противотурбулентных присадок, диагностирования утечек, обеспечения надежности подводных переходов, разработанные Х.А. Азметовым, Н.П. Антипьевым, И.Р. Байковым, А.К. Галлямовым, А.Г. Гумеровым, Р.С. Гумеровым, Р.С. Зайнуллиным, Р.Х. Идрисовым, Е.Л. Левченко, М.В. Лурье, В.Ф. Новоселовым, А.Д. Прохоровым, A.M. Шаммазовым, Ш.И. Рахматуллиным и другими учеными, позволили создать новые технические и технологические решения, обеспечившие значительный прогресс на магистральном трубопроводном транспорте.  [34]

Мировой и отечественный опыт эксплуатации магистральных нефте - и нефтепродуктопроводов свидетельствует о значительных успехах, полученных в последние годы в результате использования противотурбулентных присадок с целью снижения гидравлического сопротивления.  [35]

Разработаны технические требования к применению противотурбулент-ных присадок и создана научно-методическая база для решения технологических и технико-экономических аспектов транспорта углеводородного сырья с использованием противотурбулентных присадок.  [36]

Обычно реагент, снижающий гидравлическое сопротивление, можно закачивать в нефтепровод уже через несколько минут после доставки на место работы насосного оборудования и противотурбулентной присадки. Единственно, что необходимо иметь на трубопроводе - это средства для подключения нагнетательной установки. Как правило, закачку присадки производят на участке трубопровода после насосов, счетчиков и регулирующих устройств, чтобы снизить вероятность его разрушения. Для впрыскивания в трубопровод добавок требуется несложная механическая установка.  [37]

Создана научно-методическая база для решения технологических и технико-экономических аспектов транспорта нефтепродуктов с использованием противотурбулентных присадок, в частности: получены функциональные зависимости параметра гидравлической эффективности от концентрации противотурбулентных присадок; предложен балансовый метод диагностики утечек из магистральных нефте - и нефтепродуктопроводов с самотечными участками, основанный на использовании методологии статистической обработки данных, определяющих как с помощью обычного и характерного для любого трубопровода набора датчиков давления, температуры и расхода, так и целевого оснащения трубопровода перспективными средствами измерения расхода, например, высокоточными накладными ультразвуковыми расходомерами; разработана математическая модель и предложен алгоритм расчета системы перепуска отключенных резервных ниток подводных переходов магистральных нефтепродуктопроводов, позволяющие наряду с изменением температуры окружающей среды учитывать протяженность и размеры перепускной линии, нестационарность и начальные условия процесса сброса давления в отключенных нитках.  [38]

В результате всестороннего анализа различных вариантов ЗАО НКТН КазТрансОйл, учитывая мировой опыт фирмы Conoco по успешному применению в последние годы противо-турбулентной присадки ( ПТП) Liquid Power, в том числе и для увеличения пропускной способности магистральных нефтепроводов, было принято решение о проведении опытно-промышленных испытаний транспортировки нефти с противотурбулентной присадкой Liquid Power фирмы Conoco по магистральному нефтепроводу Атырау - Самара на его казахстанском участке.  [39]

В результате проведения восстановительных работ на наиболее ненадежных участках давление в нефтепроводе может быть увеличено с 4 до 5 2 МПа, что обеспечит увеличение его производительности на 2 млн. т / год. Применение противотурбулентных присадок позволяет обеспечить дополнительный рост объема транспортировки еще на 2 5 млн. т / год.  [40]

Какое количество противотурбулентной присадки CDR-102 для этого необходимо.  [41]

Какое количество противотурбулентной присадки Neccad-547 для этого необходимо.  [42]

Так как расчетное количество насосных станций мало отличается от целого, то трубопровод загружен практически полностью. Следовательно, применение противотурбулентных присадок нецелесообразно и самым предпочтительным способом регулирования его производительности является работа различным количеством насосов.  [43]

В качестве конкурирующих были рассмотрены варианты прокладки лупинга и применения противотурбулентной присадки CDR Flow Improver.  [44]

Разработаны теоретические и экспериментальные основы технологии применения противотурбулентных присадок на магистральных нефте - и нефтепродуктопроводах. Получены формулы для определения коэффициента гидравлического сопротивления турбулентных течений с противотурбулентными присадками и разработана методика определения и оценки гидравлической эффективности на основе опытно-промышленных испытаний, позволяющие прогнозировать адекватные технологические решения.  [45]

Страницы:      1    2    3    4

www.ngpedia.ru

ПРИСАДКИ ДЛЯ НЕФТИ, НЕФТЕПРОМЫСЛОВЫЕ РЕАГЕНТЫ

Раздел находится в стадии наполнения. Приносим извинения за некоторые некорректные данные. Звоните!

ИНГИБИТОРЫ КОРРОЗИИ

UniCor V 415 Ингибитор коррозии для антикоррозионной защиты нефтепромыслового оборудования и трубопроводов систем сбора, транспорта и подготовки нефти от сероводородной и углекислотной коррозии >>>

UniCor V 418 Предназначен для защиты от коррозии обсадных колонн добывающих скважин, выкидных линий, нефтесборных коллекторов и в системах нефтесбора, а также на предприятиях первичной переработки нефти, газа, газового конденсата >>>

UniCor R 437 Ингибиторы коррозии для защиты оборудования на предприятиях первичной переработки нефти, газа, газового конденсата. Ингибитор обеспечивает защиту конденсационно-холодильного оборудования и верхней части колонн >>>

UniCor RS 457 Нейтрализаторы коррозии для применения в процессах первичной переработки нефти и газа, каталитического риформинга и висбрекинга. Предназначен для снижения содержания кислых компонентов в нефти и нефтепродуктах, в газовых и водных средах. Применяется совместно с ингибитором коррозии UniCor R-437 >>>

ДЕПРЕССОРЫ И ДИСПЕРГАТОРЫ ДЛЯ СЫРЫХ НЕФТЕЙ, ИНГИБИТОРЫ АСПО

UniFlow 5000 Депрессорная присадка для снижения температуры застывания сырых нефтей. Норма ввода присадки 500-2000ppm, при этом температура потери текучести нефти снижается на 15-20°С >>>

UniFlow 5100 Сочетает в себе депрессорную присадку и ингибитор АСПО. Присадка улучшает реологические свойства высоковязких и высокопарафинистых нефтей, предотвращает образование АСПО на внутренних поверхностях трубопроводах и нефтепромысловом оборудовании, обладает высоким диспергирующим эффектом. Может быть использован как в малообводненных, так и высокообводненных нефтях >>>

UniSol RDS Предназначен для обработки нефти, мазута, тяжелых остатков переработки нефти. Диспергирует и стабилизирует асфальтены, предотвращает закоксовывание теплообменного оборудования и установок переработки нефти >>>

UniSol VTA Предназначен для предотвращения образования АСПО в нефтепромысловом оборудовании и трубопроводах систем добычи, сбора и транспорта нефти. Обладает свойствами модификатора вязкости: снижает вязкость и температуру застывания высокопарафинистых нефтей >>>

ИНГИБИТОРЫ СОЛЕОТЛОЖЕНИЙ

UniMar VF Используются для предотвращения образований карбонатных и сульфатных отложений минеральных солей в подземном оборудовании скважин, системах подготовки нефти и воды и теплоэнергетическом оборудовании >>>

ДЕЭМУЛЬГАТОРЫ

UniDem V Деэмульгаторы UniDem V предназначены для разрушения водо-нефтяных эмульсий в системах сбора, транспорта нефти и установках подготовки нефти >>>

UniDem RS Деэмульгаторы UniDem RS предназначены для обезвоживания и обессоливания на установках первичной подготовки нефти, а также обезвоживания нефти на промыслах со степенью обводненности до 15% >>>

UniDem XTA Предназначен для глубоко обезвоживания и обессоливания нефти на пунктах подготовки нефти и установках первичной переработки нефти >>>

ПРОТИВОТУРБУЛЕНТНЫЕ ПРИСАДКИ

Atamar TOR Предназначена для снижения гидравлического сопротивления при прокачке нефти или нефтепродуктов по транспортирующим трубопроводам. Не оказывает влияния на другие реагенты: ингибиторы коррозии, ингибиторы солеотложений, деэмульгаторы >>>

Atamar STR Раствор противотурбулентной присадки Atamar TOR, депрессорной присадки, функциональных ПАВ и растворителей >>>

СМАЗЫВАЮЩИЕ ДОБАВКИ В БУРОВЫЕ РАСТВОРЫ

ProLube Cмазывающие добавки для буровых растворов Atamar ProLube на основе синтетических жирных кислот широкой фракции для снижения коэффициента трения, позволяют на 20-25% и более уменьшить износ и прихваты инструмента. Широкий диапазон рабочих температур, экологически безопасные.

ТЕХНИЧЕСКИЕ МОЮЩИЕ СРЕДСТВА

TM 1 Предназначена для промывки и обезжиривания оборудования изделий из черных металлов и их сплавов на предприятиях нефтедобывающей промышленности и машиностроения, для очистки резервуаров и оборудования от углеводородных загрязнений (нефти, мазута, масел, СОЖ и пр.) >>>

ИМИДАЗОЛИНЫ

Имидазолины на основе жирных кислот талового масла, олеиновой кислоты, синтетических жирных кислот и их смесей.

ЖИРНЫЕ КИСЛОТЫ

Синтетические жирные кислоты фракций С10-С16, C10-C19, С18-С22. Компоненты смазывающих добавок, эмульгаторов; компоненты при синтезе депрессорных присадок, ингибиторов коррозии, деэмульгаторов.

atamarchem.ru

способ получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов - патент РФ 2463320

Изобретение относится к способам получения антитурбулентных присадок в виде суспензий и может быть использовано в трубопроводном транспорте нефти и нефтепродуктов при перекачке их в турбулентном режиме течения. Способ включает (со)полимеризацию высших способ получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов, патент № 2463320 -олефинов С6-С14 на катализаторах Циглера-Натта, измельчение полученного ультравысокомолекулярного поли-способ получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов, патент № 2463320 -олефина при криогенной температуре, смешение его с разделяющим агентом и суспензионной средой. Измельчение проводят на установке электроимпульсного типа. При этом суспензия в качестве разделяющего агента содержит стеарат кальция, а в качестве суспензионной среды - смесь изопропилового спирта и полиэтиленгликоля при следующем соотношении компонентов, мас.%: ультравысокомолекулярный поли-способ получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов, патент № 2463320 -олефин 25,0-45,0, стеарат кальция 2,5-4,5, полиэтиленгликоль 2,5-6,0, изопропиловый спирт - остальное. Способ по изобретению позволяет снизить стоимость суспензии при сохранении ее стабильности. 1 ил., 2 табл., 5 пр.

Рисунки к патенту РФ 2463320

способ получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов, патент № 2463320

Изобретение относится к способам получения антитурбулентных присадок (АТП) к углеводородным жидкостям в форме суспензий и может быть использовано в трубопроводном транспорте нефти и нефтепродуктов при транспортировке их в турбулентном режиме течения.

Условием эффективности АТП в снижении турбулентности потока перекачиваемой жидкости является хорошая растворимость и ультравысокая молекулярная масса (ММ) применяемого полимера. Из современного уровня техники известно, что наиболее эффективными АТП к нефти и нефтепродуктам являются ультравысокомолекулярные поли-способ получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов, патент № 2463320 -олефины (ПАО), получаемые (со)полимеризацией высших способ получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов, патент № 2463320 -олефинов в массе на катализаторах Циглера-Натта, которые представляют собой аморфные, хорошо растворяющиеся в перекачиваемой углеводородной жидкости полимеры.

Наиболее удобной товарной формой АТП в настоящее время является суспензия измельченного полимера. Средой для суспензии АТП может быть любая жидкость (или смесь жидкостей), плотность которой близка к плотности измельченного полимера и которая является нерастворителем для последнего.

Измельчать полимерный компонент присадки необходимо при низких (криогенных) температурах, поскольку ультравысокомолекулярные ПАО являются эластомерами, и измельчить их в конденсированном состоянии при комнатной температуре не представляется возможным, поэтому ПАО необходимо охладить ниже температуры стеклования. Из патентной литературы известно, что ПАО измельчают сначала в мельнице грубого помола, а затем в криомельнице в среде жидкого азота до состояния тонкой дисперсии с размером частиц от 10 до 800 мкм (Патент РФ 2303606 от 27.07.07, МПК8 C08F 210/00, C08F 210/14, C10L 1/10, C10L 1/16). При этом в процессе измельчения происходит частичная деструкция полимера, однако MM настолько велика, что и после измельчения ПАО достаточно эффективно снижает гидродинамическое сопротивление потока.

Известен способ получения суспензии ПАО полимеризацией в массе способ получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов, патент № 2463320 -олефинов С2-C40 на катализаторах Циглера-Натта, измельчением полученного блочного ПАО при криогенных температурах до тонкой дисперсии и суспендированием ее в воде или водно-спиртовой смеси (Патент 2125577 РФ от 27.01.99, МПК 6 C08F 10/00, C08F 4/64, B05D 7/00, C08F 210/00). Чтобы используемые спирты образовывали непрерывную фазу с водой, вводят загустители (карбоксиметилцеллюлоза и др.) и поверхностно-активные вещества. Товарная форма суспензии ПАО представляет собой продукт с низкой вязкостью и похожа па латексную краску.

Недостатком способа являются низкие показатели снижения гидродинамического сопротивления (DR), что объясняется уменьшением ММ полимера в процессе получения тонкого порошка, т.к. криогенное измельчение, по данным, приведенным в патенте, ухудшает качество полимера.

Известен также способ получения суспензии ПАО полимеризацией в массе способ получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов, патент № 2463320 -олефинов С2-С30, измельчением ПАО при криогенных температурах в присутствии твердых жирных кислот, первичных (и/или вторичных) стеарамидов или производных целлюлозы, покрывающих образующиеся полимерные частицы, с дальнейшим введением их в суспензионную среду, в качестве которой используют смесь одно- и многоатомных спиртов (Патент 6172151 США от 09.01.01, МПК6 F17D 1/00, F17D 1/16, С09К 3/00, C08J 005/05, C08J 005/06). Так, суспензия, содержащая 45 мас.% порошка полидецена, 44 мас.% 1-октанола, 11 мас.% пропиленгликоля и 0,05 мас.% гидроксипропилцеллюлозы, снижает на 50% гидродинамическое сопротивление течению сырой нефти в 47-дюймовом трубопроводе при концентрации присадки 25 ppm (часть/млн.).

Недостатком способа является высокое содержание АТП для достижения указанною эффекта.

Наиболее близким аналогом настоящего изобретения по технической сущности и достигаемому результату является способ получения неводной суспензии АТП, включающий сополимеризацию высших способ получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов, патент № 2463320 -олефинов С6-С14 на катализаторах Циглера-Натта в массе, измельчение полученного ПАО при низкой (криогенной) температуре, смешение с разделяющим агентом и суспензионной средой (Патент 2297574 РФ, опубл. 20.04.07, МПК8 F17D 1/16, C08F 10/00, C08L 1/10, C08L 1/16).

По способу ближайшего аналога ультравысокомолекулярный ПАО, обеспечивающий эффективное снижение гидродинамического сопротивления течению углеводородных жидкостей, получают (со)полимеризацией в массе высших способ получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов, патент № 2463320 -олефинов C6-C14 на катализаторах Циглера-Натта (предпочтительно, трихлорид титана в присутствии сокатализатора диэтилалюминийхлорида (ДЭАХ) или дибутилалюминийхлорида).

Разделяющие агенты, в качестве которых применяют способ получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов, патент № 2463320 -олефиновые мономеры, содержащие от 30 до 65 атомов углерода и предотвращающие агломерацию части измельченного ПАО, добавляют в ходе процесса полимеризации и/или измельчения. Размолотые при низкой температуре частицы полимер/разделяющий агент затем соединяют с суспензионной средой. В качестве суспензионной среды применяют алифатические спирты с числом атомов углерода от 5 до 12, предпочтительно, 1-гексанол. Суспензионную среду берут в количестве от 40,0 до 85,0 мас.%.

Способ, предложенный в прототипе, позволяет увеличить массовое содержание ПAO в суспензии, благодаря тонкому измельчению полимера. Однако последнее обстоятельство и является причиной уменьшения ММ полимера и, следовательно, снижения эффективности АТП. Лучшие результаты, приведенные в прототипе, относятся к суспензии ПAO, полученного полимеризацией 1-децена (С10), которая снижает гидродинамическое сопротивление гексана на 43% в пересчете на концентрацию ПАО, равную 1 ppm (1 часть/млн.), и к суспензии ПАО, полученного сополимеризацией 1-гексена и 1 додецена (С6-C12) при молярном соотношении 1:1, величина DR которой составляет 39% при той же концентрации ПАО.

Недостатком суспензии АТП ближайшего аналога является недостаточно высокий показатель величины DR течению углеводородных жидкостей. Как указывалось выше, причиной является способ криогенного измельчения полимерного компонента суспензии.

Настоящее изобретение решает техническую задачу повышения величины снижения гидродинамического сопротивления углеводородных жидкостей за счет более щадящего способа измельчения поли-способ получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов, патент № 2463320 -олефинов на установке электроимпульсного типа, а также удешевления суспензии антитурбулентной присадки за счет применения более дешевого изопропилового спирта в качестве основы суспензионной среды.

Поставленная задача решается тем, что способ получения антитурбулентной присадки включает так же как в прототипе (со)полимеризацию высших способ получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов, патент № 2463320 -олефинов С6-С14 на катализаторах Циглера-Натта, измельчение полученного ультравысокомолекулярного поли-способ получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов, патент № 2463320 -олефина при криогенной температуре, смешение его с разделяющим агентом и суспензионной средой. Измельчение при криогенной температуре проводят на установке электроимпульсного типа, суспензия в качестве разделяющего агента содержит стеарат кальция, а в качестве суспензионной среды - смесь полиэтиленгликоля и изопропилового спирта при следующем соотношении компонентов, мас.%:

поли-способ получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов, патент № 2463320 -олефин25,0-45,0
стеарат кальция 2,5-4,5
полиэтиленгликоль 2,5-6,0
изопропиловый спирт остальное

По заявленному способу в качестве ультравысокомолекулярного аморфного ПАО используют (со)полимер, полученный полимеризацией в массе высших способ получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов, патент № 2463320 -олефинов C6-C12 в присутствии микросферического трихлорида титана и ДЭАХ в качестве сокатализатора (Патент 2238282 РФ от 20.10.04, МПК7 C08F 10/14).

Полученный ПАО, после вакуумирования с целью освобождения от непрореагировавших мономеров, подвергают криогенному измельчению на установке электроимпульсного типа с использованием жидкого азота по патенту РФ 2314912 от 20.01.08, МПК7 В29В 17/00.

Как показали проведенные исследования, величина DR после измельчения электроимпульсным способом в области рабочих концентраций ПАО практически не изменяется (фиг.1). Это связано с тем, что средняя величина размера частиц составляет около 500 мкм, что предохраняет полимер от механодеструкции. Таким, образом, использование установки электроимпульсного типа вместо криомельниц позволяет свести деструкцию исходного ПАО к минимуму (фиг.1), что повышает качество АТП.

Другим достоинством измельчения ПАО на электроимпульсной установке является то, что можно варьировать гранулометрический состав измельченного полимера. Это важно с точки зрения скорости растворения присадки в перекачиваемой жидкости: если полимерные частицы размером до 500 мкм растворяются в прямогонной фракции нефти, выкипающей в пределах от 100 до 200°С за 30 мин, то частицы размером до 1 мм - в 2-3 раза дольше. Этот фактор имеет значение для поддержания высокой величины DR на всем участке ввода присадки в нефте- или продуктопровод. Гранулометрический состав измельченных частиц поли-способ получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов, патент № 2463320 -олефина размером 300способ получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов, патент № 2463320 500 мкм составляет не менее 50-65%, остальное - не более 1 мм.

В качестве разделяющего агента используют стеарат кальция, использование которого при получении суспензий АТП известно из уровня техники, но по отношению к прототипу его применение является новым и позволяет снизить себестоимость суспензии.

В качестве суспензионной среды используют смесь изопропилового спирта (ИПС) и низкомолекулярного полиэтиленгликоля (ПЭГ). Поскольку ИПС является более дешевым продуктом, его применение позволит снизить себестоимость суспензии АТП, при этом качество суспензии не ухудшается. ПЭГ применяют для регулирования плотности среды и берут примерно в 10-20 раз больше по сравнению с ИПС в зависимости от состава суспензии.

При сопоставлении существенных признаков настоящего изобретения с ближайшим аналогом выявлено, что новым при получении суспензии АТП является проведение криогенного измельчения блочного ПАО на установке электроимпульсного типа, использование в качестве суспензионной среды смеси ИПС и ПЭГ, а в качестве разделяющего агента - стеарата кальция.

На фиг.1 представлена зависимость снижения гидродинамического сопротивления (DR) гексана от концентрации (С) гексендеценового сополимера: 1 - исходного; 2 - после криогенного измельчения.

Состав АТП представлен в табл.1, величины снижения сопротивления гексана поли-способ получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов, патент № 2463320 -олефинами представлены в табл.2.

Пример 1. В реактор, снабженный трехрожковой U-образной насадкой, двумя делительными воронками с противодавлением и капилляром, вносят 200 см3 1-децена, барботируют очищенным азотом в течение 30 мин, добавляют 3,0 мл (0,22 мас.%) 10%-ного раствора ДЭАХ в гептане, барботируют еще 5-10 мин и вносят 0,250 г (0,004 мас.%) форобработанного трихлорида титана, после чего в токе азота вынимают делительные воронки, капилляры и насадку, герметично закрывают реактор и энергично встряхивают для равномерного распределения катализатора и оставляют в покое до тех пор, пока реакционная смесь не превратится в каучукоподобный материал. После этого к 25,0 г (25,0 мас.%) измельченного поли-1-децена добавляют 2,5 г (2,5 мас.%) стеарата кальция, 5,5 см3 (6 мас.%) ПЭГ, 84,7 см (66,5 мас.%) ИПС и тщательно перемешивают.

Снижение гидродинамического сопротивления (DR) гексана суспензией АТП, содержащей поли-1-децен в количестве 1 ppm (1,0 часть/млн.), составляет 48%.

Пример 2. То же, что в примере 1, но вместо 1-децена берут смесь 72,0 см3 1-гексена и 128,0 см 1-додецена. Суспензию готовят смешением компонентов при следующих соотношениях: 25,0 г (25,0 мас.%) сополимера C 6-C12, 3,5 г (3,5 мас.%) стеарата кальция, 4,1 см3 (4,5 мас.%) ПЭГ, 72,6 см3 (57,0 мас.%) ИПС.

DR гексана суспензией АТП, содержащей сополимер C6-C12 в количестве 1 ppm, составляет 52%.

Пример 3. То же, что в примере 2, но вместо смеси C6-C12 берут смесь 79,5 см 1-гексена и 120,5 см3 1-децена. Состав суспензии: 45,0 г (45,0 мас.%) сополимера С6-С10, 4,5 г (4,5 мас.%) стеарата кальция, 2,3 см3 (2,5 мас.%) ПЭГ, 61,1 см 3 (48,0 мас.%) ИПС, DR=51%.

Пример 4 (по прототипу). 1-децен полимеризуют в присутствии катализатора трихлорида титана и сокатализатора ДЭАХ или дибутилалюминийхлорида. Суспензию получают внесением 45 г (45 мас.%) размолотой смеси полимер/разделяющий агент в 65 г (65 мас.%) 1-гексанола. DR гексана суспензией, содержащей поли-1-децен в количестве 1 ppm (1,0 часть/млн.), составляет 43%.

Пример 5 (по прототипу). То же, что в примере 4, но вместо 1-децена берут смесь С6-C12 при мольном соотношении 1:1, DR=39%.

Технический результат, достигаемый при использовании заявленного изобретения, заключается в том, что величина DR гексана при внесении в него суспензии АТП, содержащей 1 ppm (1 часть/млн.) ПАО, увеличивается на 5-13% (48-52% против 39-43% в прототипе), снижается стоимость суспензии за счет применения более доступных продуктов (ИПС и стеарат кальция), а стабильность суспензии не ухудшается по сравнению с известным решением.

Таблица 1
Компоненты Содержание по примерам, мас.% способ получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов, патент № 2463320
12 34 (по прототипу) 5 (по прототипу)
Поли-1-децен 25,0 -- 35-
Полиэтиленовый воск - -- 35
Сополимер С6-С12 -35,0 --
Сополимер С6 -С10способ получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов, патент № 2463320способ получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов, патент № 246332045,0 способ получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов, патент № 2463320способ получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов, патент № 2463320
1-Гексанол- - -65 65
Стеарат кальция2,5 3,5 4,5- -
Полиэтиленгликоль 6,0 4,52,5 --
Изопропиловый спирт 66,5 57,048,0 --
Таблица 2
Поли-способ получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов, патент № 2463320 -олефин Концентрация ПАО в гексане, ppm (часть/млн.) DR, %
12 34 (по прототипу) 5 (по прототипу)
Поли-1-децен 1,0 48- -43 -
Сополимер С6-С12 1,0- 52- -39
Сополимер С6 -С10 1,0- -51 --

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ получения суспензии антитурбулентной суспензионной присадки для нефти и нефтепродуктов, включающий (со)полимеризацию высших способ получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов, патент № 2463320 -олефинов С6-С14 на катализаторах Циглера-Натта, измельчение полученного ультравысокомолекулярного поли-способ получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов, патент № 2463320 -олефина при криогенной температуре, смешение его с разделяющим агентом и суспензионной средой, отличающийся тем, что измельчение проводят на установке электроимпульсного типа, суспензия в качестве разделяющего агента содержит стеарат кальция, а в качестве суспензионной среды смесь изопропилового спирта и полиэтиленгликоля при следующем соотношении компонентов, мас.%:

поли-способ получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов, патент № 2463320 -олефин25,0-45,0
стеарат кальция 2,5-4,5
полиэтиленгликоль 2,5-6,0
изопропиловый спирт остальное

www.freepatent.ru

Способ получения противотурбулентной присадки суспензионного типа, снижающей гидродинамическое сопротивление углеводородных жидкостей

Изобретение относится к области трубопроводного транспорта жидких углеводородов, а именно к методам уменьшения их гидродинамического сопротивления. Описан способ получения противотурбулентной присадки суспензионного типа. Способ включает получение тонкоизмельченного полимера, растворимого в углеродных жидкостях. Полимер синтезируют (со)полимеризацией высших α-олефинов под действием катализатора Циглера-Натта. В качестве (со)полимера высших α-олефинов используют продукт блочной полимеризации. Тонкую дисперсию полимера получают термическим переосаждением полимера в жидкости, являющейся нерастворителем для полимера при комнатной температуре и способной его растворять при повышенной температуре. Технический результат - повышение качества полимерного компонента, сокращение объема растворителей, уменьшение экологической нагрузки. 2 пр.

 

Предлагаемое изобретение относится к области трубопроводного транспорта жидких углеводородов, а именно к методам уменьшения их гидродинамического сопротивления.

В последнее время для увеличения пропускной способности нефте- и нефтепродуктопроводов применяются полимерные противотурбулентные присадки (ПТП). Они представляют собой раствор или суспензию полимера в жидкой среде. Полимер должен растворяться в перекачиваемой жидкости и обладать высокой молекулярной массой. Еще одним необходимым условием проявления эффекта снижения гидродинамического сопротивления (эффекта Томса) является турбулентный режим течения углеводородной жидкости в трубопроводе.

Введение ПТП в поток нефти в количестве 10-50 граммов на одну тонну, приводит к увеличению производительности нефтепровода на 15-25%. Чем выше молекулярная масса полимера, тем меньше его концентрация, которая необходима для достижения данной величины снижения сопротивления.

В качестве полимерного компонента чаще всего используют сверхвысокомолекулярные (со)полимеры высших α-олефинов, синтезированные на катализаторах Циглера-Натта. Среди других нефтерастворимых полимеров им пока нет равных по соотношению цена-качество. Используют мономеры с числом углеродных атомов от 6 до 16.

Первоначально ПТП выпускали в виде раствора полимера в бензине (керосине). Однако трудности с закачкой из-за его высокой вязкости, особенно в зимнее время, привели к тому, что в настоящее время используются ПТП суспензионного типа. Готовят суспензию, как правило, измельчением продукта блочной полимеризации высших α-олефинов, представляющего собой каучукоподобный материал, при температуре ниже его температуры стеклования, а полученную полимерную крошку определенного размера смешивают с жидкой средой, не растворяющей полимер. Жидкую среду подбирают таким образом, чтобы ее плотность ненамного отличалась от плотности полимера во избежание необратимого расслоения суспензии при хранении. Содержание полимера в ПТП суспензионного типа может составлять до 25% и даже более, что намного превосходит содержание полимера в присадке растворного типа. В состав твердой фазы ПТП могут входить поверхностно-активные вещества (ПАВ), либо другие антиагломераторы, которые препятствуют слипанию частиц полимера, а также добавки ингибиторов окислительной деструкции полимеров.

Полимеризация в среде растворителя уступила место блочной еще и по соображениям величины молекулярной массы полимера, - при полимеризации в блоке она значительно выше, а следовательно, полимер получается более высокого качества.

Традиционную технологию суспензионного агента снижения гидродинамического сопротивления можно разделить на три стадии:

1. Блочная полимеризация мономера (сомономеров)

2. Измельчение каучукоподобного (со)полимера

3. Приготовление суспензии, устойчивой к расслоению

В большом количестве патентов, относящихся к способу получения ПТП суспензионного типа, описано криогенное измельчение полимеров [Пат. США 4826728, Пат. США 4720397, Пат. США 4340076]. Поскольку полимеры и сополимеры высших α-олефинов являются каучукоподобными материалами с низкой температурой стеклования (поли-1-октен, например, имеет температуру стеклования ниже минус 70°С), их механическое измельчение проводят в среде жидкого азота, т.е. ниже их температуры стеклования.

Однако известно, что работа со сжиженными газами связана с повышенной опасностью и требует специального дорогостоящего оборудования, а также определенных мер безопасности для персонала. Кроме того, сам жидкий азот является дорогостоящим материалом. Поэтому в последнее время многие компании работают над созданием некриогенной технологии измельчения полиальфаолефинов [Пат. США 6946500, Пат. США 6894088, Пат. США 7271205, Заявка на пат. США 0276566, Заявка на пат. США 0287568]. Используют предварительную пропитку «увлажняющими» агентами, в качестве которых применяют тяжелые спирты; твердые и жидкие «разделительные» агенты (производные стеариновой кислоты, высшие линейные спирты), а также специальное оборудование (гомогенизаторы, истирающие мельницы, измельчители ротор-статорного типа).

Здесь надо отметить, что присадка суспензионного типа должна содержать тонкоизмельченный полимер, иначе процесс растворения полимера в нефтепроводе будет чересчур продолжительным, что скажется на результирующей эффективности ПТП. С другой стороны, механическое измельчение полимеров, особенно тонкое измельчение, до частиц порядка 100-300 микрон, приводит к частичной механодеструкции макромолекул и снижению качества полимера.

Избежать механодеструкцию можно, например с помощью капсулированной полимеризации высших α-олефинов [Пат. США 6126872, Пат. США 6160036, Пат. США 4693321, Заявка на пат. США 20030013783]. Суть ее в том, что капельки мономера, содержащего катализатор, заключают в полимерную оболочку и суспендируют в среде, не растворяющей ни один из компонентов капсул. Таким образом осуществляется микроблочная полимеризация, и дисперсный полимер получается в одну стадию в процессе синтеза. Существенным недостатком является низкая производительность процесса.

Альтернативным методом получения тонких дисперсий, который не затрагивает длины полимерной молекулы, является осаждение полимера из раствора добавлением осадителя [Пат. США 5733953]. Этот способ является наиболее близким к настоящему изобретению, и был взят нами за прототип.

В приведенном способе осаждают полимер, имеющий высокую молекулярную массу, синтезированный (со)полимеризацией высших α-олефинов под действием катализатора Циглера-Натта в среде растворителя.

Последовательность получения суспензии такова (цитата): «маловязкую высококонцентрированную суспензию полимера получают медленным добавлением жидкости, не растворяющей полимер (например изопропиловый спирт), к раствору полимера в растворителе (например, керосине). При достаточном добавлении нерастворителя полимер осаждается из раствора в виде мелких частиц. Жидкость с осадка отделяют, осадок еще раз промывают нерастворителем. Полученная концентрированная суспензия при введении в поток углеводородной жидкости быстро растворяется и оказывает снижение гидродинамического сопротивления».

К недостаткам прототипа можно отнести следующее:

- Невысокое качество полимерного компонента

- Необходимость регенерировать большой объем растворителей

- Загрязнение окружающей среды

Задача изобретения - повышение качества полимерного компонента, сокращение объема растворителей, уменьшение экологической нагрузки.

Техническим решением предлагаемого способа является блочная полимеризация мономера (мономеров) и превращение полимера в суспензионную противотурбулентную присадку методом термического переосаждения.

В настоящем изобретении в качестве полимерного компонента ПТП используется продукт (со)полимеризации высших α-олефинов в массе мономера (мономеров) в присутствии катализатора Циглера-Натта, предпочтительно трихлорид титана в сочетании с диэтилалюминийхлоридом.

В настоящем изобретении для получения тонкодисперсной суспензии предлагается использовать термическое переосаждение (со)полимеров высших а-олефинов в жидкости, которая образует с полимером систему с верхней критической температурой смешения, значение которой лежит выше +40°С.

Такая жидкость является нерастворителем для (со)полимера при температуре близкой к комнатной, и становится растворителем при температуре выше критической температуры смешения. Последняя может составлять, например, +60°С. Тогда температура окружающей среды даже при эксплуатации присадки в южных широтах не будет превышать этого значения. В противном случае суспензия превратится в каучукоподобный материал, практически непригодный для введения в трубопровод какими-либо устройствами.

Молекула нерастворителя должна содержать хотя бы один гетероатом (кислород, азот, сера, фосфор, фтор), поскольку со всеми жидкими углеводородами, алифатическими либо ароматическими, полимеры высших α-олефинов образуют истинные растворы.

Растворяющую способность жидкой среды можно варьировать, используя те или иные растворители, а следовательно, понижать или повышать температуру полного смешения, если на то есть необходимость.

Последовательность действий получения суспензионной присадки, включающая стадию термического переосаждения, выглядит так:

1. Гомо- или сополимеризация высших α-олефинов (С6-С16) в массе мономера под действием катализатора Циглера-Натта до глубокой конверсии мономера (мономеров). При (со)полимеризации высших олефинов в качестве сомономеров допустимо использовать некоторое количество низших олефинов С2-С5. Предпочтительно каталитическая система состоит из трихлорида титана и диэтилалюминийхлорида.

2. Предварительное измельчение продукта блочной полимеризации при комнатной температуре на частицы размером более 1 мм. По нашим данным такое измельчение не вызывает заметной механодеструкции и не сказывается на качестве полимера.

3. Смешение при комнатной температуре измельченного полимера; жидкости, являющейся нерастворителем для полимера при комнатной температуре и растворителем при повышенной температуре; и при необходимости антиагломератора и ингибитора деструкции в соотношении, соответствующем конечной рецептуре присадки.

4. Растворение полимера в жидкости при повышенной температуре.

5. Охлаждение смеси до комнатной температуры, получение товарной формы суспензионной присадки.

Таким образом, в качестве (со)полимера высших α-олефинов используют продукт блочной полимеризации, а для получения суспензии полимера вместо осаждения из раствора используют термическое переосаждение в жидкости, являющейся нерастворителем для полимера при комнатной температуре и способной его растворять при повышенной температуре.

Термическое переосаждение полимера имеет ряд преимуществ по сравнению с осаждением полимера из раствора, описанном в прототипе:

Во-первых, в настоящем изобретении используется блочный (со)полимер α-олефина (α-олефинов), который имеет более высокую молекулярную массу, чем продукт (со)полимеризации α-олефина (α-олефинов) в среде растворителя.

Во-вторых, при термическом переосаждении соотношение полимер -растворитель можно подобрать таким образом, чтобы оно отвечало рецептуре готовой присадки, т.е. содержание полимера можно доводить до 23% и более. Это освобождает от необходимости регенерировать избыточное количество растворителей как в случае, описанном в прототипе.

В-третьих, частицы полимера, полученные термическим осаждением, являются однородными по размеру и составляют величину порядка 250 микрон, что обеспечивает его быстрое растворение в углеводородных жидкостях.

В-четвертых, все стадии от полимеризации до переосаждения являются практически безотходными, что значительно уменьшает экологическую нагрузку.

Суть предложенного способа проиллюстрируем на примерах:

Пример 1.

В реакционный сосуд при комнатной температуре загрузили 400 мл 1-гексена и продули его в течение 20 мин газообразным азотом. Затем, при перемешивании, сохраняя азотную подушку, последовательно внесли 35 мл раствора диэтилалюминийхлорида (ДЭАХ) в керосине концентрации 97 г/1000 мл и 0.16 г TiCl3 в виде суспензии в гептане. Суспензия TiCl3 в гептане содержала некоторое количество диизоамилового эфира в качестве ускорителя полимеризации. После 20-30 мин перемешивания, когда реакционная смесь приобретала небольшую вязкость, что свидетельствовало о начале полимеризации, ее выгружали в пластиковый контейнер, который плотно укупоривали. Дальнейшая полимеризация проходила без перемешивания при температуре окружающей среды, которую вначале поддерживали в интервале от 0 до +5°С, а затем доводили до комнатной. После достижения 90% конверсии мономера полученный каучукоподобный материал выгружали из контейнера и измельчали при комнатной температуре на частицы размером 2-3 мм.

Затем при комнатной температуре готовили смесь: полимерная крошка:амид стеариновой кислоты:1-гексанол:монометиловый эфир дипропиленгликоля в весовом соотношении 27,0:2,5:47,0:23,5. Общая масса смеси составила 100 граммов. Далее смесь нагревали до температуры 60°С и выдерживали при слабом перемешивании в атмосфере газообразного азота до полного растворения полимера. Затем полученную упруговязкую массу при слабом перемешивании охладили до комнатной температуры. Упруговязкая масса при этом превратилась в маловязкую суспензию.

Добавление суспензии к авиационному керосину в количестве 0,00022% (2,2 ppm) вызвало снижение его гидродинамического сопротивления на 30% в турбулентном режиме течения. Испытания проводились на лабораторном стенде.

Пример 2

В стеклянный реактор объемом 2 л загрузили в токе газообразного азота 300 мл 1-гексена и 700 мл 1-децена. Смесь мономеров продули азотом в течение 20 мин, затем внесли 60 мл раствора ДЭАХ в керосине концентрации 120 г/1000 мл. Затем внесли 0,4 г TiCl3. После 30 минут перемешивания в атмосфере азота, когда реакционная масса приобрела консистенцию жидкого киселя, ее выгрузили из реактора в токе азота, расфасовав в 2 пластиковых контейнера объемом 0,5 л каждый. Дальнейшая полимеризация протекала без перемешивания сначала при температуре +10°С, а затем при комнатной температуре. После достижения 85% степени превращения мономеров (по массе) сополимер извлекли из контейнера.

Пробу полимера в количестве 100 г измельчили при комнатной температуре до частиц размером 1-3 мм и сразу смешали с жидкостью, состоящей из 275 г бутилового эфира 2-этилгексановой кислоты и 25 г пропиленгликоля. К смеси добавили 0,1 г ирганокс 1010, который является ингибитором термоокислительной деструкции полимера, и 4,5 г дистеарата кальция. Смесь нагрели до 80°С и выдержали при этой температуре до полного смешения полимера и жидкой фазы. Затем, используя эффективное охлаждение и слабое перемешивание, довели температуру смеси до 20°С. При этом образовалась маловязкая суспензия полимера со средним размером частиц 250 микрон.

Отметим, что остаточный мономер, не вступивший в блочную полимеризацию (в данном примере это преимущественно децен), при измельчении полимера и переосаждении не теряется, а становится компонентом смешанного нерастворителя.

Добавление суспензии к автомобильному бензину АИ 95 в количестве 0,00026% (2,6 ppm) вызвало снижение его гидродинамического сопротивления на 30% в турбулентном режиме течения. Испытания проводили на лабораторном стенде.

Применение предложенного способа повышает качество полимерного компонента, сокращает объем растворителей, уменьшает экологическую нагрузку. Достигается это применением блочной полимеризации мономера (мономеров) и превращением полимера в суспензионную противотурбулентную присадку методом термического переосаждения.

Способ получения противотурбулентной присадки суспензионного типа, снижающей гидродинамическое сопротивление углеводородных жидкостей, включающий получение тонкоизмельченного полимера, растворимого в углеводородных жидкостях, имеющего высокую молекулярную массу, синтезированного (со)полимеризацией высших α-олефинов под действием катализатора Циглера-Натта, отличающийся тем, что в качестве (со)полимера высших α-олефинов используют продукт блочной полимеризации, а для получения тонкодисперсной суспензии полимера используют термическое переосаждение в жидкости, являющейся нерастворителем для полимера при комнатной температуре и способной его растворять при повышенной температуре.

www.findpatent.ru

Способ формирования и состав противотурбулентной присадки

Настоящее изобретение относится к противотурбулентной присадке суспензионного типа на основе высших α-олефинов, отличающееся тем, что она представляет собой коллоидный раствор, который дополнительно содержит технический углерод, пальмитат калия и октанол при следующем соотношении компонентов, % масс.: поли-α-олефин 30-35; технический углерод 1-2; пальмитат калия 1-2; октанол остальное. Также настоящее изобретение относится к способу получения противотурбулентной присадки суспензионного типа. Техническим результатом настоящего изобретения являются создание способа получения и состава противотурбулентной присадки, позволяющей повысить качество и количество мелкодисперсного полимерного компонента в присадке суспензионной формы, сокращение числа стадий получения ПТП и увеличение производительности используемого технологического оборудования. 2 н.п. ф-лы, 1 ил., 1 табл., 2 пр.

 

Изобретение относится к нефтяной промышленности, а именно к трубопроводному транспорту нефти и нефтепродуктов с противотурбулентными присадками (ПТП), которые снижают гидродинамическое сопротивление турбулентного течения и тем самым интенсифицируют перекачку углеводородных жидкостей.

По сравнению с присадками «гелевого» типа на основе концентрированных растворов поли-α-олефинов в гептане (например, патент РФ №2230074) суспензионная ПТП обладает на порядок более низкой вязкостью и содержит в три-четыре раза больше полезного вещества (полимера) в своем составе.

Промышленную полимеризацию α-олефинов в реакторе обычно проводят в неполярном растворителе (например, гептане) в присутствии катализаторов Циглера-Натта и получают высоковязкий раствор поли-α-олефинов, называемый полимеризатом, который содержит менее 10% полимера и более 90% гептана. Гептан не снижает сопротивление, а поэтому является дорогостоящим балластом. Такой концентрат (полимеризат), получивший название противотурбулентной присадки «гелевого» (растворного) типа, дозируют в незначительных количествах (10 г/м3-100 г/м3) в нефтяной поток магистрального трубопровода [Г.В. Несын, В.Н. Манжай, А.В. Илюшников. Промышленный синтез и оценка гидродинамической эффективности потенциальных агентов СГДС в нефтепроводах // Инженерно-физический журнал. 2003. Т. 76. №3. C. 142-146]. Но доставка присадки в виде концентрированного раствора с малым содержанием в ней гидродинамически активного вещества (полимера) и с подавляющей долей дорогостоящего балласта (гептана) к местам дозирования, зачастую удаленным и труднодоступным, является мероприятием экономически затратным. Попытка увеличить содержание полимера в концентрате выше 10% приводит к экспоненциальному росту вязкости раствора и превращению его в нетекучий студень, который невозможно закачать в нефтепровод из-за высокого противодавления в нем. Поэтому в последнее десятилетие широко применяют противотурбулентные присадки суспензионной формы. Такие присадки нового поколения по своей структуре и консистенции подобны соку гевеи, который имеет коллоидную природу и является эмульсией полиизопрена (натурального каучука) в воде, стабилизированной природными ПАВ.

В большом количестве патентов, относящихся к способу получения ПТП суспензионного типа, описано криогенное измельчение полимеров [Пат. США 4826728, Пат. США 4720397, Пат. США 4340076]. Поскольку полимеры и сополимеры высших α-олефинов являются высокоэластичными каучукоподобными материалами с низкой температурой стеклования (полигексен и полиоктен, например, имеет температуру стеклования ниже минус 70°C), их механическое измельчение проводят в среде жидкого азота, т.е. ниже температуры их стеклования. При этом диспергирование полимерных тел сопровождается частичной деструкцией макромолекул. Полученный мелкодисперсный порошок полимера с различными добавками-ингредиентами затем помещают в дисперсионную среду, в которой полимер не растворяется.

Другим подходом к формированию суспензионных ПТП, принципиально отличающимся от вышеописанного способа, является получение мелкой дисперсии еще на стадии полимеризации альфа-олефинов. В патентах [Пат. США 6126872, Пат. США 6160036, Пат. США 4693321] описаны весьма оригинальные решения, смысл которых заключается в том, что ПТП получают путем капсулирования и последующей микроблочной полимеризации высших альфа-олефинов. С помощью специальной форсунки капельки мономера, содержащего катализатор, помещают в оболочку, предотвращающую отравление катализатора. Внутри форсунки имеется цилиндрический канал малого диаметра, окруженный цилиндрическим каналом большего диаметра. Через канал малого диаметра поступает мономер с катализатором, а через межтрубное пространство между двумя каналами поступает материал оболочки. Скорости потоков подобраны таким образом, что материал оболочки равномерно покрывает капельки мономера с катализатором, в результате образуются капсулы, в которых в течение 24-72 часов протекает процесс микроблочной полимеризации высших альфа-олефинов до конверсии 95%.

В основе еще одного способа получения ПТП, описанного в патенте РФ №2443720, лежит осуществление суспензионной полимеризации альфа-олефинов в среде перфторированных алканов (ПФА). С одной стороны, ПФА являются инертной средой и поэтому не дезактивируют активные центры каталитической системы Циглера-Натта. С другой стороны, ПФА не являются растворителем как для высших альфа-олефинов, так и для их полимеров, что позволяет осуществить суспензионную полимеризацию. Продуктом суспензионной полимеризации высших альфа-олефинов является тонкодисперсная суспензия, которая после замены дорогостоящего ПФА на дисперсионную среду другой химической природы представляет собой товарную форму ПТП суспензионного типа.

Недостатками всех перечисленных способов формирования ПТП суспензионной формы являются использование дорогостоящих компонентов, многостадийность процесса, применение специфического оборудования и повышенные требования к соблюдению нюансов технологического регламента.

Альтернативным методом получения тонких дисперсий является превращение полимера в суспензионную антитурбулентную присадку путем термического переосаждения [Пат. РФ №2481357]. Этот способ является наиболее близким к настоящему изобретению и был взят нами за прототип.

В прототипе для получения тонкодисперсной суспензии предлагается использовать термическое переосаждение (со)полимеров высших альфа-олефинов в жидкости, которая образует с полимером систему с верхней критической температурой смешения, значение которой лежит в окрестностях +50°C. Такая жидкость является нерастворителем для (со)полимера при температуре, близкой к комнатной, и становится растворителем при температуре выше критической температуры смешения.

Последовательность технологических стадий получения суспензии, описанной в названном патенте (прототипе), такова (цитата):

1. Гомо- или сополимеризация высших α-олефинов (C6-C12) в массе мономера под действием катализатора Циглера-Натта до глубокой конверсии мономера (сомономеров). Каталитическая система предпочтительно состоит из трихлорида титана и диэтилалюминий хлорида.

2. Механическое измельчение блока синтезированного полимера при комнатной температуре на достаточно крупные частицы размером более 1-10 мм.

3. Смешение при комнатной температуре измельченного полимера и жидкости, в которой полимер не растворяется при комнатной температуре и в которой растворяется при повышенной температуре. При необходимости добавляют антиагломератор и ингибитор деструкции в соотношении, соответствующем конечной рецептуре присадки.

4. Растворение полимера в жидкости при повышенной температуре и перемешивании.

5. Медленное охлаждение смеси до комнатной температуры и получение товарной формы суспензионной присадки.

К недостаткам прототипа можно отнести следующее:

- Во-первых, подготовительная стадия измельчения полимера, который является эластомером, требует дополнительных затрат на оборудование и электроэнергию. Кроме того, на этой стадии возможно протекание механодеструкции полимерных цепей.

- Во-вторых, вследствие инерционности процесса растворения высокомолекулярных соединений при нагревании системы выше критической температуры смешения требуется достаточно длительное время до полной гомогенизации раствора, что снижает общую производительность технологического оборудования. Длительное нагревание приводит также к термической деструкции полимера и, как следствие, к снижению качества ПТП.

- В-третьих, при охлаждении нагретой системы часто происходит расслоение, что приводит к образованию скорее не суспензии, а хлопьевидного полимера, набухшего в нерастворителе (например, в смеси гексанол-1 и монометиловый эфир дипропиленгликоля в соотношении 2:1). Отмечено, что при больших концентрациях полимера данная система является очень нестабильной и может легко коагулировать в единый массивный студень.

Задача настоящего изобретения - создание способа получения и подбора состава противотурбулентной присадки, позволяющей повысить качество и количество мелкодисперсного полимерного компонента в присадке суспензионной формы, сокращение числа стадий получения ПТП и увеличение производительности используемого технологического оборудования.

Техническим решением предлагаемого способа является превращение истинного раствора полимера в суспензию методом осаждения. Настоящее изобретение в отличие от прототипа решает технологическую задачу совмещения стадии синтеза поли-α-олефина и процесса перевода полимера в суспензию без стадии его механического диспергирования с последующим растворением.

Предлагаемая суспензионная композиция противотурбулентной присадки содержит: 30-35 масс. % поли-α-олефина с очень высокой ММ ~ (5-10)⋅106, 60-65 масс. % октанола, ~ 1-2 масс. % пальмитата калия, ~ 1-2 масс. % мелкодисперсного технического углерода (сажа).

Разработанный способ перевода истинного раствора сверхвысокомолекулярного полимера в коллоидную форму не влияет на качество синтезированного продукта (отсутствует деструкция полимерных цепей и ММ не изменяется) и позволяет повысить содержание полимерного компонента в ПТП до 35%. При формировании композиции коллоидной формы используются доступные и дешевые компоненты.

Как описано в нашем патенте №2230074, синтез поли-α-олефинов на катализаторах Циглера-Натта проводят в реакторе, содержащем хороший растворитель (гептан) для мономера и полимера.

Методика предлагаемого способа формирования суспензионной ПТП состоит из четырех этапов.

На начальном этапе для формирования ПТП суспензионной формы использовали 10%-ный раствор сверхвысокомолекулярного полигексена в гептане, полученный сразу после синтеза в реакторе. Динамическая вязкость этого раствора (неньютоновской жидкости) чрезвычайно велика и в зависимости от скорости сдвига, задаваемой при проведении измерений, находится в интервале η=10-20 Па⋅с. При дальнейшем повышении концентрации полимера раствор практически теряет текучесть.

На втором этапе для увеличения текучести концентрированного раствора полимера к нему при работающей мешалке небольшими порциями приливают равный объем бутанола, т.е. формируют систему с соотношением раствор полимера в гептане : бутанол = 1:1. Одновременно добавляют мелкодисперсный технический углерод в количестве 3% от содержания полимера в системе. В результате проведенной процедуры вязкость системы резко уменьшается и, следовательно, текучесть полимерного раствора вследствие потери им «прядомости» возрастает, что позволяет легко и без потерь переместить его из реактора синтеза.

На третьем этапе для формирования агрегативно и кинетически устойчивой коллоидной системы ПТП готовят дисперсионную среду следующего состава: 95 масс. % октанола и 5% масс. пальмитата калия. Дисперсионную среду названного состава готовят в количестве, составляющем 20% от массы системы, полученной на предыдущем этапе. Затем при тщательном и интенсивном перемешивании в приготовленную дисперсионную среду порционно вносят раствор, полученный на втором этапе.

На заключительном этапе путем декантации верхнего слоя системы, полученной на третьем этапе, проводят отделение избытка дисперсионной среды от выпавшей в виде порошка дисперсной фазы. Затем к оставшейся дисперсной фазе добавляют октанол в количестве, равном удвоенной массе полимера, содержавшегося в исходном 10% концентрированном растворе, взятом на первом этапе для приготовления суспензионной ПТП. Последующей вакуумной отгонкой (Рабс~10 кПа) при небольшом нагревании (~60°C) и перемешивании удаляют легкокипящие остатки гептана (Tкип=98°C) и бутанола (Tкип=117°C). В результате дисперсионной средой становится высококипящий октанол (Tкип=195°C). Конечный состав ПТП приведен в таблице 1.

Динамическая вязкость ПТП, полученной описанным способом, составляет 0,5-1,0 Па⋅с, т.е. она на порядок меньше, чем у полимерного раствора после синтеза, содержащего значительно меньшую долю полимера (~10%) в единице объема раствора.

Проведенное нами осаждение полимера из раствора и его диспергирование имеют ряд преимуществ по сравнению с термическим переосаждением, описанным в прототипе:

- Во-первых, в настоящем изобретении заявлен способ, позволяющий без снижения молекулярной массы выделить полимер, синтезированный в реакторе, из концентрированного раствора в виде мелкодисперсной суспензии и исключает дополнительную стадию механического измельчения, описанную в прототипе.

- Во-вторых, при осаждении из раствора возможно получение ПТП с содержанием сверхвысокомолекулярного полимера до 35%, не подвергшегося механической и термической деструкции.

- В-третьих, предлагаемый способ может быть легко реализован на практике в промышленных масштабах.

Для подтверждения отсутствия деструкции полимерных цепей в процессе приготовления ПТП коллоидной консистенции, сопровождающейся потерей качества активного компонента за счет уменьшения ММ полимера, сформированную присадку исследуют на капиллярном вискозиметре в ламинарном режиме течения и подвергают гидродинамическому тестированию на турбулентном реометре для определения ее противотурбулентных свойств. Турбулентный реометр конструктивно прост и подобен капиллярному вискозиметру, но позволяет проводить гидродинамические исследования как в ламинарной, так и в турбулентной области течения жидкости [М.М. Гареев, Ю.В. Лисин, В.Н. Манжай, А.М. Шаммазов / Противотурбулентные присадки для снижения гидравлического сопротивления трубопроводов. СПб.: Недра. 2013. 228 с.]. Измеряемую величину эффекта снижения гидродинамического сопротивления (DR, %), характеризующую снижение энергетических затрат на перемещение единицы объема жидкости, рассчитывают по формуле .

Формула характеризует отношение разности коэффициентов сопротивления растворителя и полимерного раствора (Δλ=λS-λp) к значению коэффициента сопротивления растворителя (λS). Относительная величина DR является мерой снижения энергетических затрат на перекачку полимерного раствора по сравнению с исходным растворителем. Об эффективности полимерного образца судят по величине «оптимальной» концентрации (СОПТ., кг/м3), т.е. концентрации, при которой наблюдается максимальное значение эффекта (DRMAX, %) при заданном напряжении сдвига (τ, Па) на стенке цилиндрического канала. Чем меньше численное значение СОПТ, тем более эффективной считается добавка.

Для доказательства отсутствия деструкции полимерных цепей в процессе формирования ПТП коллоидной консистенции заявляемым способом проводят сравнительные измерения характеристической вязкости [η] двух растворов полиизопрена (MM = 2.1⋅106) с разной предысторией. Первую серию разбавленных растворов полиизопрена (натурального каучука) в гептане для определения [η] готовят по общепринятой (эталонной - ЭТ) схеме из образца полимера, не подвергавшегося диспергированию до суспензионного состояния. Вторую серию разбавленных растворов готовят из этого же образца полимера, но который предварительно по описанному выше способу был диспергирован при формировании суспензионной композиции (ПТП) и затем выделен из нее. Определенные методом капиллярной вискозиметрии характеристические вязкости растворов с разной предысторией практически совпали ([η]ЭТ = 0,42 м3/кг и [η]ПТП = 0,41 м3/кг). После проведения турбореометрического тестирования установлено, что близкими по величине оказались также и «оптимальные» концентрации этих растворов (СЭТ = 2,0 кг/м3 и СПТП = 2,1 кг/м3), при которых максимальные эффекты снижения гидродинамического сопротивления составляют DRMAX = 28% для этих образцов при одинаковом напряжении сдвига 10 Па в турбулентном реометре. Результаты, полученные вискозиметрическим и турбореометрическим методами, свидетельствуют об отсутствии деструкции макромолекул при формировании противотурбулентных присадок коллоидного типа по предлагаемой методике.

Примеры конкретного выполнения

Пример 1. В реактор объемом 1 л загружают 150 мл гептана и 60 мл гексена-1, затем 5 мл раствора триизобутилалюминия в гептане с концентрацией 0,29 ммоль/мл и 1,2 ммоль пропилтриметоксисилана. Полимеризацию проводят при температуре 20°C в течение часа. По окончании синтеза добавляют 20 мл изопропанола для дезактивации катализатора. Отбирают из реактора часть полимеризата и по сухому остатку определяют содержание полимера в нем. Методом гель-проникающей хроматографии установлено, что в результате проведенного синтеза получен сверхвысокомолекулярный полигексен (MM = 7⋅106)

Пример 2. Для приготовления ПТП суспензионной формы используют концентрированный раствор полигексена (10% масс.) в гептане, полученного после синтеза в реакторе (пример 1). После формирования ПТП по описанной выше методике получают коллоидную систему, содержащую в своем составе 33% полимера.

Для сравнительных реологических испытаний созданной ПТП растворяют 1,2 грамма суспензионной ПТП и 0,4 грамма чистого полимера (предварительно высаженного из полимеризата) в 100 мл гептана соответственно и получают для дальнейших гидродинамических исследований два раствора с концентрацией полигексена 4 кг/м3. Затем из этих растворов готовят две серии более разбавленных растворов (2,0 кг/м3; 1,0 кг/м3; 0,05 кг/м3; 0,025 кг/м3) и проводят вискозиметрические измерения. Значения характеристической вязкости растворов, приготовленных из суспензионной ПТП и из чистого полимера, примерно одинаковы и равняются [η]ПТП=1,31 м3/кг и [η]ЭТ=1,33 м3/кг соответственно. Полученные результаты свидетельствует о стабильности полимера в процессе приготовления ПТП коллоидной формы.

Для проведения сравнительного турбореометрического тестирования из растворов созданной ПТП и чистого полимера с концентрацией 4 кг/м3, описанных в примере 3, готовят предельно разбавленные растворы с концентрациями: С = 0,05 кг/м3; 0,025 кг/м3; 0,0125 кг/м3; 0,0062 кг/м3; 0,0031 кг/м3. Свежеприготовленные растворы каждой концентрации пропускают через турбореометр при напряжении сдвига τ=10 Па, обеспечивающем турбулентный режим течения (Re=8000). Результаты гидродинамических тестов приведены на фиг. 1. На фигуре 1 показана зависимость величины эффекта DR, % при τ=10 Па от концентрации полимера в гептане. Растворы приготовлены из полигексена, выделенного из полимеризата, полученного в реакторе. Растворы приготовлены из ПТП коллоидной формы, содержащей 33% активного компонента (полигексена). Видно, что предлагаемая противотурбулентная присадка, оптимальная концентрация которой составляет СОПТ ≈ 0,005 г/м3, является чрезвычайно эффективным агентом снижения гидравлического сопротивления. Практическое совпадение кривых 1 и 2 свидетельствует о том, что перевод концентрированного раствора полимера в коллоидную форму предлагаемым способом не оказывает влияния на качество активного компонента (полимера), что свидетельствует об отсутствии деструкции в процессе формирования ПТП.

1. Противотурбулентная присадка суспензионного типа на основе высших α-олефинов, отличающаяся тем, что она представляет собой коллоидный раствор, который дополнительно содержит технический углерод, пальмитат калия и октанол при следующем соотношении компонентов, % масс.:

Поли-α-олефин 30-35
Технический углерод 1-2
Пальмитат калия 1-2
Октанол остальное

2. Способ получения противотурбулентной присадки суспензионного типа по п. 1, снижающей гидродинамическое сопротивление углеводородных жидкостей, включающий получение высокодисперсного полимера, растворимого в углеводородных жидкостях, имеющего высокую молекулярную массу, синтезированного (со)полимеризацией в гептане высших α-олефинов под действием катализатора Циглера-Натта, отличающийся тем, что увеличивают текучесть полученного в реакторе синтеза вязкого раствора поли-α-олефина добавлением бутанола и октанола, выделяют из полимерного раствора мелкодисперсный порошок поли-α-олефина в виде новой дисперсионной фазы, концентрируют и стабилизируют полученную коллоидную композицию сажей и пальмитатом калия.

www.findpatent.ru


Смотрите также