Способ определения содержания объемной доли воды в нефтях или нефтепродуктах. Сколько воды в нефти


Нефть, вода, газ. Плотность, вязкость.

Пластовые воды являются обычным спутником нефти.

Вода обладает способностью смачивать породу и потому она обволакивает тончайшей пленкой отдельные зерна ее, а также занимает наиболее мелкие поровые пространства. Вода, залегающая в одном и том же пласте вместе с нефтью или газом, называется пластовой. В нефтегазоносных залежах распределение жидкостей и газов соответствует их плотностям: верхнюю часть пласта занимает свободный газ, ниже залегает нефть, которая подпирается пластовой водой. Однако пластовая вода в нефтяных и газовых залежах может находиться не только в чисто водяной зоне, но и в нефтяной и газовой, насыщая вместе с нефтью и газом продуктивные породы залежей. Эту воду называют связанной или погребенной.

Осадочные породы, являющиеся нефтяными коллекторами, формировались, в основном, в водных бассейнах. Поэтому еще до проникновения в них нефти поровое пространство между зернами породы было заполнено водой. В процессе тектонических вертикальных перемещений горных пород (коллекторов нефти и газа) и позднее углеводороды мигрировали в повышенные части пластов, где происходило распределение жидкостей и газов в зависимости от плотности. При этом вода вытеснялась нефтью и газом не полностью, так как основные минералы, входящие в состав нефтесодержащих пород, гидрофильные, т. е. лучше смачиваются водой, чем нефтью. Поэтому вода при вытеснении ее нефтью в процессе образования нефтяных залежей частично удерживалась в пластах в виде тончайших пленок на поверхности зерен песка или кальцита и в виде мельчайших капелек в точках контакта между отдельными зернами и в субкапиллярных каналах. Эта вода находится под действием капиллярных сил, которые значительно превосходят наибольшие перепады давлений, возникающие в пласте при его эксплуатации, и поэтому остается неподвижной при разработке нефтегазовой залежи.

В состав вод нефтяных месторождений входят, главным образом, хлориды, бикарбонаты и карбонаты металлов натрия, кальция, калия и магния. Содержание хлористого натрия может доходить до 90 % от общего содержания солей. Иногда встречается сероводород и в виде коллоидов окислы железа, алюминия и кремния. Часто присутствует йод и бром, иногда в таком количестве, что вода может быть объектом их промышленной добычи.

Воды нефтяных месторождений отличаются от поверхностных или отсутствием сульфатов (соединений SO4), или их слабой концентрацией. Помимо минеральных веществ, в водах нефтяных месторождений содержатся некоторые минеральные вещества, углекислота, легкие углеводороды, нафтеновые и некоторые жирные кислоты.

Воды нефтяных месторождений могут содержать бактерии органических веществ, которые придают различную окраску (розовую, красную, молочную).

Отношение объема воды, содержащейся в породе, к объему пор этой же породы называется коэффициентом водонасыщенности

,

где - коэффициент водонасыщенности;  - объем воды в породе;  - объем пор.

Отношение объема нефти, содержащейся в породе, к общему объему пор называется коэффициентом нефтенасыщенности

,

где  – коэффициент нефтенасыщенности;  – объем нефти в породе;  – объем пор.

Содержание связанной воды в породах нефтяных залежей колеблется от долей процента до 70 % объема пор и в большинстве коллекторов составляет 20  30 % этого объема.

Исследованиями установлено, что при содержании в пласте воды до 35  40 % и небольшой проницаемости пород пласта из скважин может добываться безводная нефть, так как связанная вода в этом случае в пласте не перемещается.

Рассмотрим основные физические свойства пластовых вод.

1)Минерализация воды характеризуется количеством растворенных в ней минеральных солей. Степень минерализации вод часто выражается их соленостью, т. е. содержанием растворенных в воде солей, отнесенных к 100 г раствора.

Пластовые воды обычно сильно минерализованы. Степень их минерализации колеблется от нескольких сот граммов на 1 м3 в пресной воде до 80 кг/м3 в сильноминерализованных водах и до 300 кг/м3 – в рапах.

Воды нефтяных месторождений делятся на два основных типа: жесткие и щелочные.

На практике для классификации вод принимают классификацию Пальмера, который рассматривает воду как раствор солей. Каждая соль, растворяясь в воде, придает ей определенные свойства. Например, раствор поваренной соли делает воду нейтральной. Жесткость придают воде сульфаты кальция и магния, образующие "вторичную соленость".

2)Плотность воды зависит от степени ее минерализации и от температуры и составляет примерно от 1010 до 1080 кг/м3 и более.

3)Сжимаемость. Коэффициент сжимаемости воды, т. е. изменение единицы объема ее при изменении давления на 0,1 МПа в пластовых условиях, находится в пределах 3,7·10-5  5·10-5/0,1 МПа в зависимости от температуры и абсолютного давления. Содержание в воде растворенного газа повышает ее сжимаемость.

4)Растворимость газов в воде значительно ниже растворимости их в нефтях. Рост минерализации воды способствует уменьшению растворимости в ней газа.

5)Электропроводность находится в прямой зависимости от минерализации вод. Пластовые воды являются электролитом.

6)Вязкость пластовой воды при 20  составляет 1мПа·с, а при 100  – 0,284 мПа·с.

students-library.com

Сколько воды в нефти. Недвижимость Украины

Сколько воды в нефти

В силу различных причин нефть в своем потоке всегда несет некоторое количество влаги, проще говоря, воды. Для непрерывного измерения процентного содержания воды в потоке товарной нефти сотрудники Института автоматики Академии наук Киргизской ССР сконструировали оригинальный цифровой влагомер. Он состоит из электронного вычислительного блока и двух емкостных первичных преобразователей тока: измерительного и компенсационного. Пространство между электродами компенсационного преобразователя заполнено обезвоженной нефтью, а сам он установлен внутри измерительного преобразователя и обтекается потоком товарной нефти, принимая ее температуру, Электронный блок регистрирует приращение емкостей первичных преобразователей, проводит соответствующие вычисления и указывает в цифрах количество воды в нефти. Прибор способен учитывать свойства контролируемой среды, поэтому обеспечивается высокая точность анализа, не зависящая от изменения температуры и химического состава нефти. Если процент влаги превышает установленный предел, прибор включает световую и звуковую сигнализацию, предупреждающую о поступлении некондиционной чефти.

Научные сотрудники Харьковского института радиоэлектроники, изучив явление, разработали комплекс аппаратуры для радиоакустического зондирования атмосферы, позволяющей с высокой точностью дистанционно определять температуру, скорость и направление ветра в приземном слое высотой около 500 метров. Оперативные сведения о состоянии этого слоя воздуха — он называется пограничным —чрезвычайно важны гидрометеослужбе для точного прогнозирования погоды.

Комплекс аппаратуры, со, зданный в Харькове, включает генератор звуковых ко. лебаний, специальный радиолокатор и блок регистрации результатов радиоакустического зондирования атмосферы.

Дата: 22 сентября 2011 Автор: Mika3

Может Вас заинтересуют эти публикации:

www.reallook.com.ua

Определение воды в нефтепродуктах.



Обратная связь

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение

Как определить диапазон голоса - ваш вокал

Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими

Целительная привычка

Как самому избавиться от обидчивости

Противоречивые взгляды на качества, присущие мужчинам

Тренинг уверенности в себе

Вкуснейший "Салат из свеклы с чесноком"

Натюрморт и его изобразительные возможности

Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.

Как научиться брать на себя ответственность

Зачем нужны границы в отношениях с детьми?

Световозвращающие элементы на детской одежде

Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия

Как слышать голос Бога

Классификация ожирения по ИМТ (ВОЗ)

Глава 3. Завет мужчины с женщиной

Оси и плоскости тела человека - Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.

Отёска стен и прирубка косяков - Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.

Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) - В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Лабораторная работа №3

Цель работы: определить качественно и количественно наличие воды в нефтепродуктах.

Теоретические сведения.

Все углеводородные жидкости гигроскопичны, т.е. способны растворять в себе воду.

Растворимость воды в углеводородных жидкостях зависит от химического строения жидкости и их молекулярной массы, парциального давления пара над жидкостью и температуры. Так, например, растворимость воды в ароматических углеводородных жидкостях выше, чем нафтеновых и парафиновых. С увеличением молекулярной массы растворимость воды в углеводородных жидкостях несколько падает, наиболее заметно это у ароматических углеводородов. С ростом температуры растворимость воды в углеводородах увеличивается, причем на более значительно у ароматических углеводородов. Растворимость воды в углеводородных жидкостях прямо пропорциональна парциальному давлению паров воды над жидкостью и подчиняется закону Генри. Вода в нефтепродуктах может находиться в трех фазовых состояниях: растворенная, эмульсионная и свободная. Переход из одного фазового состояния в другое определяется внешними условиями (давлением и температурой).

Каждая углеводородная жидкость может содержать в себе строго определенное максимальное количество воды в растворенном состоянии. Дальнейшее увеличение влажности приводит к ее выделению в эмульсионное состояние. Граница перехода зависит от температуры, с увеличением которой количество воды в растворенном состоянии может быть больше. Вода в эмульсионном состоянии заметна невооруженным глазом. Она равномерно распределена в объеме нефтепродукта в виде микрокапель воды. В таком состоянии наибольшую опасность вода представляет при эксплуатации топливных систем летательных аппаратов, так как при отрицательных температурах она превращается микрокристаллы льда, способные закупорить фильтрующие элементы системы.

Дальнейшее увеличение влажности приводит к укрупнению микрокапель воды и их оседанию на дно емкостей.

Вода переходит в свободное состояние. Наибольшую опасность такая вода представляет при эксплуатации масляных систем, так как рабочая температура масла, как правило, выше 1000С. Вода на дне бака вскипает и приводит к вспениванию масла. При резком нагревании может произойти выброс масла в атмосферу через дренажную систему. Кроме того, наличие воды в нефтепродуктах способствует увеличению их коррозионной активности по отношению к металлам.

С целью устранения нежелательных проявлений воды в нефтепродуктах используют различные конструктивные и физико-химические методы.

Для контроля воды в нефтепродуктах применяют количественные и качественные методы анализов.

Определение воды в топливах.Качественное определение воды.

Проведение испытания.

Наличие эмульсионной и свободной воды в топливах можно определить невооруженным глазом, визуально. Испытуемое топливо энергично встряхивают в бутылке и быстро наливают в цилиндр из бесцветного прозрачного стекла диаметром 40-55 мм. Рассматривать топливо необходимо через 1-2 минуты, когда поднимутся пузырьки увлеченного топливом воздуха. Наличие в топливе эмульсионной воды делает топливо непрозрачным. При этом заметны мелкие капли воды, распределенные по всему объему. Свободная вода находится на дне сосуда с заметным разделом границы между топливом и водой.

При проведении аэродромного контроля разрешается рассматривать топливо в банке из прозрачного бесцветного стекла.

Экспресс-метод определения воды в топливах по ГОСТ 19820-74.

Для определения воды в топливах для реактивных двигателей применяют прибор ПОЗ-Т (рис.5), состоящий из шприца-дозатора, датчика, механизма открытия и закрытия датчика-пружинного рычага и хвостовика. Шприц-дозатор состоит из цилиндрического корпуса, выполненного из нержавеющей стали и штока с поршнем. Объем топлива, засасываемого шприцом-50мл.

 

Датчик 1, изготовленный из пластмассы, состоит из 2-х частей-неподвижной, соединенной одним концом с корпусом шприца-дозатора и подвижной-крышки, соединенной с механизмом открытия и закрытия датчика. В обеих частях датчика имеются три калиброванных топливных канала, соединяющих внутреннюю полость шприца-дозатора с наружной.

4 10 2 9 11 1

Приспособление ПОЗ-Т

1.Дозирующая часть 7.Калибровочные отверстия

2.Механизм открытия-закрытия датчика 8.Топливный клапан

3.Неподвижная часть датчика 9.Хвостовик с кулачком

4.Подвижная часть датчика 10.Рычаг механизма открытия-закрытия

5.Поршень 11.Регулирующая гайка

6.Шток 12.Крышка

 

Между подвижной и неподвижной частями датчика вкладывают фильтрующий пакет. Т.о, если поместить головку датчика в топливо и перемещать поршень вправо, то через фильтрующий пакет топливо будет засасываться в шприц-дозатор. Фильтрующий пакет состоит из двух отрезков аналитической ленты НЭЛ, сложенных вместе.

Один слой-белого цвета, пропитанный солью трехвалентного железа, второй слой-желтого цвета, пропитанный красной и желтой кровяными солями. Желтый слой индикаторного элемента должен быть обращен к неподвижной части датчика и предназначен для определения содержания воды.

Проведение испытания.

Пробу испытуемого топлива в количестве 300-400 мл отбирают в чистую сухую посуду. Открывают датчик прибора 1, вставляют индикаторную ленту и закрывают датчик при помощи хвостовика. Погружают датчик и в течение 7-10 сек всасывают топливо шприцом и выдерживают в течение 3-5 с. Затем вынимают датчик из топлива и извлекают индикаторный элемент. Испытанное топливо удаляют из шприца нажатием на шток поршня.

Раскрывают индикаторный пакет и рассматривают его на белом фоне. Приблизительное количество воды определяют по цвету отпечатков второго (желтого) индикатора. Если на желтом слое индикаторного элемента отсутствуют бледно-голубые отпечатки, содержание воды в топливе составляет менее 0,001% (по массе). При наличии одного или двух бледно-голубых отпечатков содержание воды составляет не более 0,0015% (по массе). При наличии двух голубых отпечатков (или одного голубого, одного-бледно-голубого) содержание воды в топливе составляет не более 0,0025% (по массе). Если имеются три хорошо заметных голубых отпечатка, содержание воды в топливе составляет более 0,0025% (по массе). Такой метод считается полуколичественным.

Определение воды в маслах и жидкостях для гидросистем.

Качественное определение воды.

Наличие эмульсионной и свободной воды в маслах и жидкостях для гидравлических систем можно определить визуально, аналогично проверке чистоты авиатоплив. Испытуемый нефтепродукт предварительно разбавляют четырехкратным количеством чистого авиабензина Б-70.

Другой качественный метод определения воды в маслах, маслосмесях и жидкостях для гидравлических систем основан на создании температурных условий, при которых проявляется наличие незначительных количеств воды: наблюдается потрескивание при разрывании пузырьков водяного пара при выходе их на поверхность нагретого масла. (ГОСТ 1547-42).

Испытание проводится с помощью масляной бани, представляющей собой цилиндрический сосуд диаметром 100 мм и высотой 90 мм, снабженной металлической крышкой. К внутренней стороне крышки на расстоянии 80 мм от нее прикреплен с помощью металлической стойки, проходящей по центру металлический круг. В крышке и соответственно в круге сделаны отверстия для термометра и пробирок с нефтепродуктом. Пробирку разрешается нагревать, перемещая ее в наклонном положении над небольшим пламенем горелки.

Проведение испытания.

Заливают баню минеральным маслом с температурой вспышки не ниже 2400С и нагревают до температуры 1750С±50С. В чистую и сухую стеклянную пробирку диаметром 14-16 мм и длиной 120-150 мм наливают испытуемое масло до высоты 80-90 мм. Закрывают пробирку пробкой, в отверстие которой вставлен сухой термометр так, чтобы его шарик находился на высоте 20-30 мм от дна пробирки. Пробка должна иметь вырез для выхода воздуха. Пробирку с испытуемым маслом помещают в баню и нагревают в течение нескольких минут до температуры 1800С. При наличии влаги в испытуемом масле оно пенится, слышится треск, пробирка вздрагивает, а слой масла на стенках пробирки мутнеет. Наличие влаги считается установленным, если явственный треск слышен не менее двух раз.

Определение воды в смазках.

Качественный метод определения воды в смазках (ГОСТ 1548-42)

Метод основан на создании температурных условий, при которых проявляется наличие воды в смазке.

В химическую пробирку диаметром 15-18 мм и высотой 170-180 мм, предварительно тщательно промытую и просушенную теплым воздухом, поме щают испытуемую смазку стеклянной палочкой до высоты 40-60 мм. Для облегчения введения густых и сильно водных смазок слегка подогревают верхнюю часть пробирки, после чего комки мази, частично расплавляясь у стенок, опускаются на дно.

Пробирку закрывают пробкой с вырезом, в отверстие которой вставлен термометр. Последний помещают в смазке с таким расчетом, чтобы ртутный шарик находился примерно на ровном расстоянии от стенок пробирки и на 20 мм ниже уровня смазки.

Проведение испытания

Подготовленную пробирку со смазкой нагревают, перемещая ее над небольшим пламенем горелки. Скорость повышения температуры в начале (до полного расплавления смазки и удаления из нее воздуха) поддерживают в пределах 10-200С в минуту. После того как вся масса смазки расплавится, нагрев ускоряют до 700С в минуту и заканчивают при температуре 1800С. Появление толчков и треска при нагревании расплавленной смазки указывает на наличие в ней следов воды.

Вывод

Теоретически ознакомились, как определить качественно и количественно наличие воды в нефтепродуктах.

Министерство образования и науки РФ

Федеральное агентство по образованию

Государственное образовательное учреждение

Высшего профессионального образования

Новосибирский государственный технический университет

 

 

Лабораторная работа №4

«Определение механических примесей в нефтепродуктах»

 

Факультет: ЛА Преподаватель: Козел В.И.

Группа: СД-91

Студенты: Зайцева А

Леонтьев А.

Курбанов А.

Муравьев А.

 

 

Новосибирск 2013.

Лабораторная работа №4

megapredmet.ru

Способ определения содержания объемной доли воды в нефтях или нефтепродуктах

Использование: для контроля за содержанием воды в нефтях и нефтепродуктах. Сущность: способ включает отбор пробы в мерные емкости, причем предварительно взвешиванием устанавливают массу воды Мв в мерной емкости по метке при температуре 20°С, также взвешиванием устанавливают массу обезвоженного любым способом нефтепродукта Мно в мерной емкости по метке при температуре 20°С. В мерную емкость отбирают исследуемую пробу и определяют ее массу mн, вычисляют приведенную массу пробы Mн, а объемное содержание воды в исследуемой пробе W определяют по формуле W=(Мн-Мно)/(Мв-Мно). Технический результат - упрощение способа. 3 н.п. ф-лы, 2 табл.

 

Изобретение относится к способам контроля за содержанием воды в нефтях и нефтепродуктах и может быть использовано в нефтяной промышленности при подготовке нефти на промыслах.

Известен способ определения количественного содержания воды в нефтях (обводненности) методом Дина и Старка, принятый в качестве стандартного (ГОСТ 2477-65), основанный на измерении объема воды, испарившейся из определенного объема исследуемой обводненной пробы нефтепродукта при прогреве ее до температуры кипения в присутствии специального растворителя (Современные методы исследования нефтей. Справочно-методическое пособие. Под ред. А.И.Богомолова, М.Б.Темянко, Л.И.Хотынцевой. Л.: Недра, Ленинградское отделение, 1984, с.431). Этот метод очень трудоемкий, длительный, в ряде случаев недостаточно точный, плохо воспроизводимый, требует при малых содержаниях воды большого количества исследуемой пробы, в высоковязкой нефти не позволяет отделить полностью сильно связанную воду.

Известен способ измерения обводненности нефти с помощью измерения силы натяжения тросика, связанного с буйком цилиндрической формы, погружаемым в резервуар с водонефтяной эмульсией (патент РФ №2006823, кл. G 01 N 9/08). Измерение производят с подниманием буйка от дна резервуара с остановками и шагом Δ, меньшим половины длины буйка, и в моменты остановок фиксируют значение силы натяжения тросика. Затем строят зависимость силы натяжения тросика от высоты, по которой определяют плотность и обводненность нефти по высоте резервуара. Недостатками такого способа являются трудоемкость и недостаточная точность измерения, кроме того, его применяют только для измерения обводненности нефти в резервуаре.

Известны способы определения содержания воды в нефтепродуктах, основанные на оптических явлениях: поглощении (а.с. СССР №258723, кл. G 01 N 21/25, 1968 г.) или отражении (а.с. СССР №541112, кл. G 01 N 21/59, 1974 г.) света. При осуществлении известных оптических способов измерения оптическая плотность нефтепродукта на двух длинах волн: аналитической (где вода поглощает свет) и эталонной (где вода свет не поглощает) и по разности сигналов, пропорциональных оптической плотности на аналитической и эталонной длинах волн (частотах) без учета (а.с. СССР №258723) или с учетом ряда других параметров (а.с. СССР №541112), определяют содержание воды в нефти. Способ (патент РФ №2044307, кл. G 01 N 21/85, 1995 г.) основан на измерении разности инфракрасного поглощения исследуемой и обезвоженной проб одного сорта на частоте поглощения воды, величина которой связана линейной зависимостью с содержанием в исследуемой пробе связанной воды. По способу (патент РФ №2044307, кл. G 01 N 21/85, 1995 г.) оптическую плотность безводной пробы предлагается измерять на той же частоте, на которой измеряется оптическая плотность исследуемой (анализируемой) пробы.

Способы, основанные на оптических явлениях, как правило, более чувствительны и более точны, чем метод Дина-Старка, основанный на испарении, последующей конденсации и измерении объема выделенной из нефти воды. Однако для реализации таких способов необходимо дорогостоящее оптическое оборудование и необходимость проведения сложных расчетов оптической плотности исследуемой (анализируемой) и эталонной проб.

Задачей изобретения является устранение перечисленных выше недостатков.

В основе предлагаемого способа определения объемного содержания связанной воды в нефтях и нефтепродуктах лежит способ, основанный на определении приведенного веса пробы к объему мерной емкости.

Это достигается тем, что в способе, заключающемся в отборе проб в мерные емкости, предварительно, перед первым использованием мерной емкости, например колбы, взвешиванием устанавливают массу дистиллированной воды Мв в мерной емкости по метке при температуре калибровки, например 20°С, также взвешиванием устанавливают массу обезвоженного любым способом нефтепродукта Мно в мерной емкости по метке при температуре калибровки, после этого в мерную емкость отбирают исследуемую (анализируемую) пробу, уровнем несколько ниже метки, и взвешиванием определяют массу исследуемой пробы mн, затем термостатируют мерную емкость с исследуемой пробой при температуре калибровки и доливают дистиллированной водой до уровня метки, взвешивают и вычисляют массу долитой воды ΔМв, после этого находят приведенную массу пробы Мн по формуле

Мн=mн·Мв/(Мв-ΔМв),

далее, объемное содержание воды в исследуемой пробе (обводненность) W вычисляют по формуле

W=(Мн-Мно)/(Мв-Мно).

Кроме того, для определения приведенной массы пробы можно доливать до метки обезвоженный любым способом нефтепродукт, после взвешивания вычислить массу долитого обезвоженного нефтепродукта ΔМно и приведенную массу исследуемой пробы (Мн) определяют по формуле

Мн=mн·Мно/(Мно-ΔМно).

В случае, если исследуемая проба быстро расслаивается, то ее наливают в мерную емкость выше метки и после термостатирования отбирают верхнюю обезвоженную часть, взвешиванием определяют ее массу ΔМно, далее определяют приведенную массу пробы из выражения

Мн=mн·Мно/(Мно+ΔМно).

Кроме того, дополнительно, взвешиванием устанавливают массу водной части Мр (масса рассола), предварительно выделенной каким-либо известным способом из отдельно взятой пробы нефтепродукта в мерной емкости по метке при температуре калибровки, и объемное содержание воды в исследуемой пробе (обводненность) W вычисляют по формуле

W=(Мн-Мно)/(Мр-Мно).

Определение содержания воды осуществляют следующим образом.

Перед первым использованием мерной емкости, например колбы, устанавливают “водное число” (Мв) мерной колбы по методике п.2.2.2.2. ГОСТ 3900-85, то есть массу воды в объеме колбы по метке при температуре калибровки 20°С, и вычисляют “водное число” по формуле Mв=m2-m1, где m1 - масса пустой колбы, m2 - масса колбы с водой, далее по аналогии с “водным числом”, аналогично устанавливают массу нефтепродукта в мерной колбе (Мно), обезвоженного любым способом по формуле Мно=m3-m1, где m1 - масса пустой колбы, m3 - масса колбы с нефтепродуктом по метке при температуре калибровки. Затем из крана отбора проб, например на скважине, отбирают 50-100 мл нефтепродукта в мерную колбу. Уровень нефтепродукта (пробы) должен быть несколько ниже контрольной метки мерной колбы. Взвешиванием определяют массу пробы с мерной колбой (m4), определяют массу пробы по формуле mн=m4-m1. Далее в колбу с пробой добавляют воду до уровня метки, взвешивают и определяют массу m5, затем находят массу долитой к пробе воды по формуле ΔМв=m5-m4, после чего вычисляют приведенную массу пробы (Мн) к объему мерной колбы по метке по формуле

Обводненность W находят из выражения

где Мн - приведенная масса пробы к объему мерной колбы по метке,

Мно - масса обезвоженного нефтепродукта в мерной колбе по метке,

Мв - “водное число” - масса воды в мерной колбе по метке.

Измерение объемного содержания воды в пробе может производиться по содержанию чистой (дистиллированной воды) без учета содержания в ней растворенных солей или с учетом растворенных солей, тогда во всех операциях по анализу жидкости в первом случае используется дистиллированная вода, а во втором случае используется водная часть нефтепродукта (пластовая или подтоварная вода), предварительно выделенная из отдельно взятой пробы каким-либо известным способом. Так как состав нефти из конкретной скважины или месторождения меняется медленно, то массу воды Мр в мерной колбе по метке и аналогично, массу обезвоженного нефтепродукта Мно в мерной колбе по метке определяют по мере необходимости, когда изменяется химический состав пластовых вод или обезвоженного нефтепродукта.

Измерение обводненности можно проводить изложенным выше способом с добавлением до метки не только воды, но и обезвоженного любым способом нефтепродукта, находят массу долитого до метки нефтепродукта ΔМно. В этом случае приведенную массу исследуемой пробы (Мн) определяют по формуле

В случае, если исследуемая проба быстро расслаивается, то ее наливают в мерную емкость выше метки, взвешивают и после термостатирования отбирают верхнюю обезвоженную часть, взвешиванием находят ее массу ΔМно, далее определяют приведенную массу пробы из выражения

Применение предлагаемого способа проиллюстрируем следующим примером.

Пример. Определим обводненность - объемное содержание воды в смеси воды и индустриального масла, выраженную в %.

Смесь состоит из воды с растворенной в ней солью NaCl в количестве до 200 г/л (рассол) и масла индустриального. Количество воды в смеси может меняться в пределах от 0 до 100%.

В связи с тем что концентрация соли в любых частях смеси одинакова, наполняем смесь в две мерные колбы. Одну пробу в мерной колбе используем для измерения приведенного веса смеси по описанному выше способу (формула 1), другую пробу используем для выделения из нее смеси воды с солью (рассол) методом расслаивания. Так как индустриальное масло легче воды, то в расслаиваемой смеси во второй пробе оно будет находиться сверху. Вторую пробу набирают в объеме, достаточном для выделения из нее рассола и чистого масла методом расслаивания в количестве 60-120 мл. После расслаивания отбирают верхнюю часть - чистое масло и определяют Мн. Рассол фильтруют и определяют массу рассола Мр по метке в первой колбе описанным выше способом.

В качестве примера приведены результаты проведенной на предприятии-заявителе экспериментальной проверки измерения обводненности масел (табл. 1) и приготовления контрольных растворов (табл. 2). Для проверки используют смесь воды и индустриального масла и смесь, состоящую из воды с растворенной в ней солью NaCl (рассол), и масла индустриального. Количество воды в смеси может меняться в пределах от 0 до 100%.

Выводы. Численные значения объемной доли воды, полученные при проведении измерений, близки к измеренным значениям контрольных растворов.

Предлагаемый способ является универсальным, пригодным для определения обводненности любых нефтепродуктов и любых нерастворимых друг в друге жидкостей.

Измерение содержания воды в исследуемой пробе с помощью предлагаемого способа не занимает много времени. Для измерения достаточен объем проб не более 100 мл. Способ позволяет определить содержание воды в нефтях и нефтепродуктах с точностью до ±0,5% и выше.

Главной отличительной особенностью этого способа является простота его выполнения.

1. Способ определения содержания объемной доли воды в нефтях и нефтепродуктах, включающий отбор пробы в мерные емкости, предварительно взвешиванием устанавливают массу воды Мв в мерной емкости по метке при температуре 20°С, также взвешиванием устанавливают массу обезвоженного любым способом нефтепродукта Мно в мерной емкости по метке при температуре 20°С, отличающийся тем, что после этого в мерную емкость, например колбу, отбирают исследуемую (анализируемую) пробу уровнем несколько ниже метки и взвешиванием определяют массу исследуемой пробы mн, затем термостатируют мерную емкость с исследуемой пробой и доливают дистиллированной водой до уровня метки, взвешивают и вычисляют массу долитой воды ΔМв, после этого находят приведенную массу пробы Мн по формуле

Мн=mн·Мв/(Мв-ΔМв),

объемное содержание воды в исследуемой пробе (обводненность) W вычисляют по формуле

W=(Mн-Мно)/(Мв-Мно).

2. Способ определения содержания объемной доли воды в нефтях и нефтепродуктах, включающий отбор пробы в мерные емкости, предварительно взвешиванием устанавливают массу воды Мв в мерной емкости по метке при температуре 20°С, также взвешиванием устанавливают массу обезвоженного любым способом нефтепродукта Мно в мерной емкости по метке при температуре 20°С, отличающийся тем, что после этого в мерную емкость, например колбу, отбирают исследуемую (анализируемую) пробу уровнем несколько ниже метки и взвешиванием определяют массу исследуемой пробы mн, затем термостатируют мерную емкость с исследуемой пробой и доливают до метки обезвоженный любым способом нефтепродукт, взвешивают и вычисляют массу долитого нефтепродукта ΔМно, после этого приведенную массу исследуемой пробы (Мн) определяют по формуле

Мн=mн·Мно/(Мно-ΔМно),

объемное содержание воды в исследуемой пробе (обводненность) W вычисляют по формуле

W=(Mн-Мно)/(Мв-Мно).

3. Способ определения содержания объемной доли воды в нефтях и нефтепродуктах, включающий отбор пробы в мерные емкости, предварительно взвешиванием устанавливают массу воды Мв в мерной емкости по метке при температуре 20°С, также взвешиванием устанавливают массу обезвоженного любым способом нефтепродукта Мно в мерной емкости по метке при температуре 20°С, отличающийся тем, что если исследуемая (анализируемая) проба быстро расслаивается, то ее наливают в мерную емкость несколько выше метки и после термостатирования взвешиванием определяют массу исследуемой пробы mн, отбирают верхнюю обезвоженную часть, взвешиванием определяют ее массу ΔМно, после этого определяют приведенную массу пробы Мн из выражения

Мн=mн·Мно/(Мно+ΔМно),

объемное содержание воды в исследуемой пробе (обводненность) W вычисляют по формуле

W=(Mн-Мно)/(Мв-Мно).

www.findpatent.ru

Определение объема внедряющейся в залежь воды по данным характеристики вытеснения нефти водой

 

Определение объёма воды, внедряющейся в залежь, когда разработка её ведется при водонапорном режиме, является достаточно сложной задачей и поэтому все известные способы решения являются достаточно приближенными.

Первые попытки определить объём воды, внедряющейся в залежь, были предприняты Херстом в начале 40–х годов, когда была предложена следующая зависимость

 ,                                                                          (1)

где  – время;

     – константа, учитывающая физические свойства пласта и жидкости;

   – падение давления в залежи.

Зависимость (1) позднее была обобщена с учетом неустановившегося притока воды из водоносной области, более сложной зависимостью следующего вида

 ,                                                      (2)

где  – проницаемость;  – толщина пласта;  – средний радиус месторождения;    – время;  – давление;    – часть контура месторождения, через которую поступает вода  в нефтяную залежь;   – вязкость жидкости;

  – пьезопроводность пласта.

В 1946 году Шилсюизом был предложен метод, согласно которому объем внедряющейся воды определяется выражением [3, 4]

                                                                                           (3)

где   – константа вторжения вод.

Для оценки величины  предложены различные методы, по одному из которых величину  рекомендуется определять по формуле

,                                                        (4)

где    – фазовая проницаемость для нефти;

         – эквивалентный радиус залежи;

            –  начальное пластовое давление.

В 1949 году Ван Эвердингеном и Херстом на основе так называемой теории “укрупненной скважины” была предложена еще одна зависимость для определения объема воды, поступающей в залежь из–за контура.

Этот метод впоследствии нашел широкое применение в практике проектирования разработки газовых месторождений при водонапорном режиме, зависимость которой имеет вид

 ,                                                                 (5)

,                                                          (6)

где  – параметр Фурье; , – функции Бесселя первого и второго рода нулевого порядка.

Краткий обзор приведенных выше зависимостей  показывает, что практическое их использование представляет собой довольно трудную задачу,  в связи с чем ниже предпринята попытка определения объема внедряющейся в пласт воды, используя характеристики вытеснения нефти водой, так как последние в интегральной форме учитывают все особенности процесса извлечения нефти с помощью вытеснения ее из пор водой.

Если нефтяная залежь разрабатывается в условиях водонапорного режима, то зависимость между суммарным отбором нефти, нефтенасыщенностью и объемом внедряющейся в нефтяную залежь воды в рамках теории Баклея–Леверетта может быть описана следующим соотношением

 ,                                                    (7)

Здесь  – объем пор пласта;  – содержание нефти в потоке жидкости;

 – нефтенасыщенность в обводненной зоне пласта; –коэффициент   использования    пор   при   бесконечно  долгой промывке пласта;

 –  суммарный   объем   внедрившейся  в  пласт воды  в   долях  объема пор;

–  содержание связанной воды и остаточная нефтенасыщенность пласта.

В работах [1, 4] показано, что жидкостно–нефтяной фактор может быть представлен линейной зависимостью от суммарного отбора жидкости

                                                                     (8)

где  –  постоянные величины, определяемые по промысловым данным;

– жидкостно–нефтяной фактор.

Из (8) следует, что величина   и суммарная добыча нефти могут быть выражены следующими формулами:

,                                                                                         (9)

                                                                                (10)

Дифференцируя (9) по , получим:

                                                    (11)

Подставляя (8), (9) и (10) в (11), после некоторых преобразований, получим следующее дифференциальное уравнение, связывающее между собой величины  и 

,                                                 (12)

Интегрируя  это выражение при условии, что  при , находим

,                                                 (13)

Подставляя (9), (10), (13) в уравнение (5) и разрешая его относительно величины  , можно получить

.                                   (14)

Последняя формула позволяет по параметрам характеристики вытеснения  и  , а также по величине жидкостно–нефтяного фактора  рассчитать суммарный объем внедряющейся в пласт воды, причем из формулы (14) видно, что зависимость между величинами  и   линейная.

Формулу (14) можно преобразовать к несколько иному виду. Прибавим и отнимем в числителе второго члена формулы (14) величину .

Тогда получим:

.                                                                       (15)

Но так как  , то последнее выражение запишем в виде:

.                                                                  (16)

Из зависимости (16) видно, что объем внедряющейся в пласт воды равен объему извлеченной из пласта жидкости плюс величину, зависящую от параметров характеристики вытеснения.

При этом, если учесть данные, приведенные выше,  то  величина  будет равна

,                                                             (17)

где  – безводная добыча нефти;

       – извлекаемые запасы нефти при данной системе разработки.

При разработке залежи в условиях эффективного водонапорного режима с применением различных систем заводнения в нефтенасыщенную зону пласта внедряется вода из пластовой водонапорной системы и вода, закачиваемая через систему нагнетательных скважин.

Одновременно с этим через добывающие скважины отбирается некоторое количество воды вместе с нефтью.

Отсюда видно, что разница между объемом внедряющейся воды и объемом отбираемой воды равна объему воды, накапливаемому в залежи в процессе разработки, что можно выразить следующей формулой

,           (18)

которую можно записать и через жидкостно–нефтяной фактор

 .                                                            (19)

Из формулы  (19) видно, что при бесконечно долгой промывке пласта, когда жидкостно–нефтяной фактор стремится к бесконечности , максимальный объем воды, накапливающийся в порах, будет равен

.                                                                  (20)

Если принять, что   и  , то формула (20) примет вид

.                                      (21)

Из последней формулы видно, что для того, чтобы добыть извлекаемые  запасы нефти, объем внедрившейся  в поровое пространство воды должен составлять от 3–х до 4–х  объемов извлекаемых запасов, поскольку, по всей вероятности, вода в количестве 2 – 3 объемов извлекаемых запасов нефти идет на компенсацию изменений пористой среды, связанных с упругими деформациями и раз газированием нефти в пласте.

 

7universum.com

В нефти «Дагнефтепродукта» слишком много воды

Ольга Пасынкова 1508927384 2017-10-25T13:29:44+03:00 2017-10-25T13:39:36+03:00 Поэтому нефть забраковала «Транснефть». Содержание в углеводородах влаги в норме не более 0,5 %. В сырье предложенном «Дагнефтью» ее 2,7 %. рд

рд

Поэтому нефть забраковала «Транснефть». Содержание в углеводородах влаги в норме не более 0,5 %. В сырье предложенном «Дагнефтью» ее 2,7 %.

«Транснефть» приостановила прием нефти в нефтепроводную систему в Махачкалинском порту из-за несоответствия качеству, сообщило  RNS со ссылкой на официального представителя «Транснефти» Игоря Демина.

 

В ночь на 25 октября в порту Махачкалы остановили прием нефти в систему из-за повышенного содержания влаги — 2,7% вместо 0,5%. Как показал анализ, во влаге много солей, характерных для морской воды. С начала года это 14-й случай выявления некондиции нефти  в порту Махачкалы. Ответственность за дефект лежит на «Дагнефтепродукте», выступающем посредником между портом и «Транснефтью».

 

В целом по стране поставки нефти на НПЗ идут по плану, сообщил официальный представитель нефтетранспортной компании.

 

Напомним, прибрежные воды Каспия отравлены выбросами и Росприроднадзор летом даже запретил купаться в море.

Читайте нас на канале Яндекс.Дзен
  • рд

mkala.org

Нефтепродукты содержание в воде - Справочник химика 21

    Рассмотрены оперативные методы определения в нефтях и нефтепродуктах содержания воды и механических примесей, а также вязкости и температуры застывания дизельных топлив в потоке.  [c.403]

    Все стандартные методы определения содержания механических примесей в нефтепродуктах (табл. 27) основаны на весовом анализе. Исключение составляет проба на прозрачность, применяемая для характеристики содержания воды и механических примесей, в некоторых сортах топлив. [c.163]

    Нефтеловушки — это прямоугольный железобетонный резервуар, разделенный на несколько секций и предназначенный для удаления нефти, а также взвешенных осадков, прошедших через песколовку. Глубина ловушки составляет 2—2,4 м, ширина секции 2—6 м, длина определяется нз расчета, чтобы средняя продолжительность пребывания воды в ловушке составляла около 2 ч при расчетной скорости потока 0,003—0,008 м/с. Содержание нефтепродуктов в воде, выходящей из нефтеловушки, составляет около 100 мг/л. [c.318]

    Определение содержания воды в нефтепродуктах (ГОСТ 2477—65) [c.161]

    В нефтепродуктах содержание воды значительно меньше, чем в нефтях. Большинство нефтепродуктов по отношению к воде обладает очень низкой растворяющей способностью. Кроме того, нефтяные дистиллятные топлива обладают и меньшей, чем нефть, эмульгирующей способностью, так как в процессе переработки удаляется значительная часть смолистых веществ, нафтеновых кислот и их солей, серосодержащих соединений, которые, как сказано выше, играют роль эмульгаторов. [c.24]

    Цель настоящей работы - дать основные сведения о составе, свойствах, особенностях нрименения топлив и масел для автомобильного транспорта, сопоставить отечественные и зарубежные марки осветить практические вопросы, связанные с количественным и качественным учетом нефтепродуктов, методы и средства определения плотности нефтепродуктов, содержания воды и механических примесей. [c.4]

    Содержание воды в нефтепродуктах определяют в соответствии с методом, предусмотренным ГОСТ 2477—65 с последую-Ш.ИМИ из.менсннями и дополнениями. Метод количественного определения содержания лоды основан на принципе отгонки воды и растворителя от нсфтепролухта с последующим их разделением в градуированном приемнике на два слоя. [c.30]

    На установках первичной переработки нефти достигнута высокая степень автоматизации. Так, на заводских установках используют автоматические анализаторы качества ( на потоке ), определяющие содержание воды и солей в нефти, температуру вспышки авиационного керосина, дизельного топлива, масляных дистиллятов, температуру выкипания 90 % (масс.) пробы светлого нефтепродукта, вязкость масляных фракций, содержание продукта в сточных водах. Некоторые из анализаторов качества включаются в схемы автоматического регулирования. Например, подача водяного пара в низ отпарной колонны автоматически корректируется по температуре вспышки дизельного топлива, определяемой с помощью автоматического анализатора температуры вспышки. Для автоматического непрерывного определения и регистрации состава газовых потоков применяют хроматографы. [c.12]

    По современным требованиям содержание свободной воды в реактивных топливах не должно превышать 0,002—0,003% (масс.) [1]. В других нефтепродуктах содержание воды допускается в больших пределах [например, в мазутах — 1 -ь 2% (масс.)]. [c.8]

    В тех случаях, когда малое содержание воды в авиационных бензинах, моторных топливах, изоляционных, турбинных и специальных маслах не может быть определено по методу, предусмотренному ГОСТ 2477—65, применяют количественный метод, основанный на взаимодействии гидрида кальция с водой, содержащейся в испытуемом нефтепродукте, и измерении объема выделившегося при этом водорода (ГОСТ 8287—57). [c.162]

    Пробу анализируемой нефти (нефтепродукта) перемешивают в течение 5 мин. Вязкие и парафинистые нефти (нефтепродукты) предварительно нагревают до 50—60 °С. Если в исходной пробе нефти (нефтепродукта) содержание воды более 0,5 %, то ее обезвоживают фильтрованием через прокаленный хлорид натрия или другое твердое обезвоживающее вещество. [c.118]

    Определение содержания воды в нефтепродуктах [c.161]

    ПОВЕДЕНИЕ НЕФТЯНЫХ ЭМУЛЬСИЙ ВО ВНЕШНЕМ ЭЛЕКТРИЧЕСКОМ ПОЛЕ Коалесценцию капель в электрическом поле выской напряженности используют, как правило, для разрушения эмульсий типа В/Н, полярная жидкость которых, имеющая №льшую диэлектрическую проницаемость и относительно высокую электропроводность (вода), диспергирована в неполярной жидкости с небольшой диэлектрической проницаемостью и сравнительно низкой электропроводностью (нефть, нефтепродукты). Так, диэлектрическая проницаемость воды, молекулы которой характеризуются большим электрическим дипольным моментом, составляет 81, в то вревкш как диэлектрическая проницаемость нефти - около 2. Усредненная диэлектрическая проницаемость водонефтяной эмульсии зависит от содержания воды в ней и с ростом обводненности увеличивается [41, 42]. Электропроводность чистой воды равна 10" - 10" Ом" -см", а соленой - еще больше. Электропроводность безводной нефти составляет всего 10" - 10" Ом" см" . При увеличении содержания воды проводимость эмульсии значительно повышается. [c.47]

    Применяются общие и специальные методы анализа нефтепродуктов. Первые служат для определения физико-химических свойств, нормируемых для большинства товарных нефтепродуктов, например, содержание воды, золы, механических примесей, кислотность и т. д. [c.150]

    Перед анализом жидкий нефтепродукт тщательно взбалтывают в течение 5 мин, а вязкие и парафинистые нефтепродукты подогревают (не выше 60° С). От тщательно перемешанного нефтепродукта берут навески на анализы, в первую очередь для определения содержания воды, механических примесей, коксуемости и зольности, а затем уже для определения других показателей. [c.156]

    Для характеристики содержания воды в нефтепродуктах пользуются как качественными, так и количественными методами определения (табл. 26). [c.161]

    Уровень нефтепродукта до и после слива, уровень подтоварной ноды до и после слива, температура, нлотность, содержание воды и механических прпмесей [c.141]

    Количественное содержание воды в нефтях и во всех нефтепродуктах определяют по способу Дина и Старка. Этот метод заключается в том, что 100 з испытуемого нефтепродукта (для смазок берется 25 з) нагревают в смеси со 100 см растворителя в приборе Дина и Старка. Растворитель, испаряясь, увлекает за собой содержащуюся в нефтепродукте влагу. Пары воды и растворителя конденсируются в холодильнике, и отогнанная вода оседает на дно приемника — градуированной ловушки. По количеству воды в ловушке рассчитывают процентное содержание ее в нефтепродукте. [c.162]

    Степень осушки зависит от температуры процесса осаждения, которая не должна быть более 35 °С, так как указанное выше остаточное содержание воды близко к количеству воды, растворимому в нефтепродукте при этой температуре. [c.37]

    Коррозия металлов в нефтепродуктах имеет свои специфические особенности и в значительной мере определяется наличием в них растворенной и свободной воды. В реальных условиях хранения, транспортирования и применения нефтепродуктов происходят постоянное насыщение их водой и конденсация ее на металлических поверхностях. Содержание воды в топливах может колебаться в широких пределах [от 0,001 до 0,01% (масс.)] и зависит от условий эксплуатации техники и от климатических факторов [298]. Главным источником накопления воды в нефтепродуктах является атмосферная влага, которая при изменении температуры нефтепродуктов и стенок резервуаров (топливных баков и др.) конденсируется на металлических поверхностях. [c.282]

    Допустимое содержание воды и негорючих примесей принимается до 0,1 % для маловязких и до 1—2% — для вязких нефтепродуктов (в этом случае количество осадка ограничивается значением 0,25%). [c.476]

    Присутствие в нефтепродуктах малых количеств (до 1%) воды сказывается на вязкости в сторону ее незначительного уменьшения. Так, мазут, имевший в безводном состоянии 35=14,47 и 50=5,46, после прибавки 1% воды показал зо=14,35 и 50= = 5,42. Повышение вязкости при сколько-нибудь значительном содержании воды объясняется тем, что мельчайшие капельки ее оседают у спускного отверстия и на стенках спускного канала вискозиметра, замедляя этим самым скорость истечения масла. [c.44]

    Примечание. Показатели качества нефтепродуктов определяются методами испытаний по следующим ГОСТам цетановое число — 3122—67, фракционный состав — 2177- 6, кинематическая вязкость — 33—66, кислотность и кислотное чис-сло — 5985—59, зольность — 1461—59, содержание серы — 1771—48, содержание меркаптановой серы — 6975—57, содержание меркаптановой серы потенциометрическим титрованием—9558—60, испытание на медной пластинке — 6321—69, водорастворимые кислоты и щелочи — 6307—60, механические примеси — 6370—59. содержание воды — 2477—65, температура вспышки в закрытом тигле — 6356—52, температура вспышки в открыто.- тигле — 4333—48. условная вязкость — 6258—52. коксуемость — 5987—51, коксуемость 10%-ного остатка дизельного топлива — 5061—49, температура помутнения и начало кристаллизации — 5066—56, температура застывания — 1533—42, содержание сероводорода — 11064—64, содержание смол — 1567—56, определение цвета — щ 2667—52, йодное число — 2070—55 содержание серы хроматным способом — 1431—64, [c.9]

    Таким образом, в сырой нефти остается относительно небольшое количество олеофобных загрязнений. Однако даже в таком количестве олеофобные примеси в нефти, поступающей на переработку, приносят большой вред, поскольку вызывают хлористоводородную и сероводородную коррозию всего нефтеперегонного оборудования. Кроме того, при подогреве нефти выпадающие из пластовой воды соли забивают трубы теплообменников, печей и нарушают нормальный технологический режим установок, что приводит к ухудшению качества нефтепродуктов и сокращению сроков работы оборудования. Содержание воды в нефти, поступающей на перегонку, не должно превышать 0,1-0,2%, так как сама вода является наиболее нежелательной олеофобной примесью. Уже на испарение воды при перегонке затрачивается в восемь раз больше тепла, чем на испарение такого же количества углеводородов нефти. В присутствии воды при подогреве нефти происходит гидролиз хлор -дов и образуется соляная кислота, оказывающая сильное коррозионное действие на оборудование. [c.6]

    Анализ нефти состоит из определения плотности, содержания воды, солей и потенциального содержания светлых нефтепродуктов и масел или их компонентов. Нефть анализируют перед переработкой данные анализа дают возможность определить, какой режим перегонки следует установить па установке и какие продукты и в каком количестве следует из нее получить. [c.213]

    Уровень нефтепродукта до и после налива, температура, плотность, содержание воды п механических примесей [c.141]

    Уровень нефтепродукта до и пое.пе налива, уровень подтоварной воды до п после на. пша, темпер тура. плотность, содержание воды и механических примесей То же [c.142]

    Уровень нефтепродукта, уровень подтоварной воды, температура, плотность, содержание воды Объемное количество, температура, нлотность, содержание воды Масса [c.143]

    При контакте нефтепродуктов с водой последняя находится частично в капельно-взвешенном и главным образом в эмульгированном состоянии, содержание ее может достигать у дизельных топлив до 30 %. При длительном отстаивании (табл. 1.1) топливо в значительной степени освобождается от воды, и ее остаток составляет 2-3 %, причем вода находится в эмульгированном высокодисперсном и растворенном состоянии. Газотурбинные топлива (особенно по ГОСТ 10433-75) обводняются в значительно большей степени, чем дизельные, а вода из них при отстаивании отделяется медленнее, так как она задерживается в виде хорошо стабилизированных полидисперсных эмульсий. Например, при смешивании газотурбинных топлив с водой последняя отделяется полностью из топлив МРТУ 12Н №110-64 только через 12 часов отстаивания, а из топлив ГОСТ 10433-75 через 24 часа. При подогреве топлив до 50-60 °С вода отстаивается значительно быстрее. [c.18]

    Колбы для разгонки нефтепродуктов Колбы для разгонки бензола, толуола и ксилола Вискозиметры Пинкевича Измерительные колбы к вискозиметру для определения условной вязкости Приемники — ловушки аппарата для количественного определения содержания воды Пикнометры Отстойнпки [c.36]

    Точное содержание воды в нефтепродукте определяется путем перегонки с разбавителем по способу Дина и Оарка. [c.212]

    Кроме таких общих с другими нефтепродуктами характеристик, как вязкость, температуры застывания и вспышки, содержание воды и механических примесей, кор розионность, испаряемость и т. д., смазки обладают рядом специфических свойств, присущих только им эффективная вязкость — величина этого показателя характеризз ет зфовень и постоянство энергетических потерь в узле трения, т. е. устойчивость его работы предел прочности и термоупрочнение определяют способность смазки удерживаться на движущихся деталях, наклонных поверхностях, в негерметизированных узлах трения (предел прочности), а также сохранять свойства в процессе эксплуатации (термоупрочнение) пенетрация характеризует консистенцию (густоту) смазки тем-п атура каплепадения определяет верхний температурный предел работоспособности смазки, а склонность к сползанию — способность предотвращать разрывы пленки на вертикально закрепленных поверхностях, что особенно важно для консерва-ционных смазок коллоидная и механическая стабильность характеризуют постоянство состава и свойств смазки при хранении и эксплуатации. [c.468]

    Оба метода получили широкое распространение, но не являются достаточно точными при содержании воды от О до 1%. Для нефтей с таким содержанием воды рекомендуется применять метод Фишера, являющийся модификацией стандартного метода (А8ТМ0 1744), определения воды в жидких нефтепродуктах. Повышение точности достигается применением л-этилпиперидина. В отечественной практике этот метод пока не находит широкого применения. [c.142]

    Процесс ведут в ректификационной насадочной колонне с двумя отпарными секциями, смонтированными соосно с колонной. Производительность установки до 1 кг/ч. Для перегонки на аппарате РУСТ-2 можно использовать нефть с содержанием воды не бопее 0,1%. Дпя обеспечения максимальной (потенциальной) доли отгона каждого нефтепродукта ипи их суммы разделительную способность копонны РУСТ-2 выбирают такой, чтобы при нормальной ее работе не быпо напеганИя температур кипения (по ГОСТ 2177 - 82) смежных продуктов. Это возможно при эффективности насадки между каждой парой выводимых нефтепродуктов не менее семи теоретических тарелок. Четкость разделения регулируется также интенсивностью теп-лопсавода в отпарных секциях. [c.211]

    Нефть и нефтепродукты отгружаются в танках судов без пломб. Пригодность танков судна для налива нефти или нефтепродуктов в техническом и коммерческом отношении определяется перевозчиком. Качество нефти и нефтепродуктов в танках судов определяется на основании анализа проб, отобранных из танков после налива — в порту отправления и перед сливом — в порту назначения. При обнаружении в порту назначения более повышенного содержания воды в нефти или нестандартности нефтепродуктов по сравнению с данными паспорта качества и требованиями соответствующих государственных стандартов вопрос об ответственности грузоотправителя и перевозчика решается сторонами в претензионном порядке, а при неурегулировании спора — органом арбитража в зависимости от результатов анализа арбитражных проб нефти и нефтепродуктов, хранящихся у грузоотправителей, и анализов капитанской пробы , следовавшей с грузом. [c.77]

    Для количественного определения содержания воды в нефтепродуктах применяют аппарат по ГОСТ 1594—69 Е. Аппарат представляет собой узкогорлую колбу /, соединенную непосредственно прн помощи шлифа с отводной трубкой приемника-ловушки 2 н холодильника 3 (рис, 6). Доиускается применение до пол нительно к аппарату с /юрмальным шлифом колбы типа KU1 45/50 п прямым переходом типа П1 по ГОСТ 23932—79 а также металлической кол бы, пая-нной медью. [c.30]

    Масса нефтепродуктов при отпуске в железнодорожные цн терны, как и при их приеме, определяется взвешиванием либо объемно-массо вы.м методом. При определении. массы нефтепродукта объемно-массовым методом грузоотправитель в товаротранспортной накладной указывает тип цистерны полное наи-.менование и марку нефтепродукта плотность при температуре измерения уровня в цистерне уровень (или объем) процент содержания воды и массу нефтепродукта в каждой цисгерие. [c.112]

    Значения pH нефтесодержащих вод лежат в пределах 6-7. Поверхностное натяжение при 20 °С составляет 6,75—7,25 мкДж/см , что позволяет сделать заключение о наличии некоторого количества поверхностноактивных компонентов, вьшолняющих роль эмульгаторов. Солевой состав вод представлен преимущественно хлоридами натрия и кальция. Значительное содержание солей позволяет допустить возможность образования ионно-электростатического фактора устойчивости. Содержание нефтепродуктов в водах как в поверхностном слое, так и в объеме изменяется в процессе эксплуатации. [c.35]

    Holford Pro esses , Англия), коалесцирующего (,,Hydrovan , Голландия). По рекламным данным эти сепараторы могут работать в различных режимах с остаточным содержанием нефтепродуктов в воде 3—10 мг/л. [c.59]

    На рис. 4.7 представлена экспериментальная установка диполофоре-тического разделения нефтесодержащих вод. По трубопроводу вода через запорный кран подается в смесительный бак 2. Туда же подается нефтепродукт —дизельное масло летнее из исходной емкости нефтепродукта 1 через запорный кран. В смесительном баке при помощи насоса 3 приготавливают эмульсию нефтепродукта в воде, которая при помощи того же насоса по трубопроводу направляется в диполофоретическую ячейку 4, где подвергается электрообработке. Сконцентрированная эмульсия отводится через патрубок, а очищенная вода по трубопроводу направляется в мерный цилиндр 5. Анализ содержания нефтепродукта в очищенной воде осуществляли спектральным методом. [c.71]

    Значительно влияние напряжения на электродах в пределах от 30 до 90 В. Дальнейшее повышение напряжения мало влияет на очистку. Снижение напряжения ниже 30 В резко уменьшает эффективность процесса. Влияние толщины слоя диэлектриков наблюдается при значениях от 3 до 5 мм. Наблюдающееся снижение конечного содержания нефтепродукта в воде при толщине диэлектрика около 20 мм можно объяснить появлением эффекта фильтрации, а не диполофоретического концентрирования. [c.72]

    Эксплуатация установки предусматривается на морской воде, т. е. концентрация солей в воде должна быть 15—29 г/л. Для определения влияния солесодержания на эффект очистки на лабораторном электрокоагуляторе были проведены исследования эмульсий с различным содержанием КаС1 при оптимальных режимах обработки. Концентрация нефтепродукта в воде составляла 5 000 мг/л. Установлено, что при концентрации соли до 3 г/л наблюдается незначительное повышение эффекта очистки. Это может быть связано с увеличением силы тока, и, как следствие. [c.76]

    Таким образом, применяя двухступенчатую схему очистки электрокоагулятор — диполофоретические ячейки, можно снизить содержание нефтепродуктов в воде до минимальных значений. [c.77]

chem21.info