способ добычи сверхвязкой нефти. Технология добычи сверхвязкой нефти


ТЕОРИЯ И ПРАКТИКА СКВАЖИННЫХ ТЕХНОЛОГИЙ ДОБЫЧИ СВЕРХВЯЗКИХ НЕФТЕЙ И ПРИРОДНЫХ БИТУМОВ С ИСПОЛЬЗОВАНИЕМ РАСТВОРИТЕЛЕЙ

Транскрипт

1 ТЕОРИЯ И ПРАКТИКА СКВАЖИННЫХ ТЕХНОЛОГИЙ ДОБЫЧИ СВЕРХВЯЗКИХ НЕФТЕЙ И ПРИРОДНЫХ БИТУМОВ С ИСПОЛЬЗОВАНИЕМ РАСТВОРИТЕЛЕЙ М.Р. Якубов 1, Г.В. Романов 1, С.Г. Якубова 1, Д.Н. Борисов 1, Д.В. Милордов 1, К.И. Якубсон 2 1 Институт органической и физической химии им. А.Е. Арбузова Казанского научного центра РАН, 2 Институт проблем нефти и газа РАН Вязкость сверхвязких нефтей и природных битумов (в научный оборот эти два понятия вошли под общим термином «битумы») в пластовых условиях превышает 10 тыс. мпа с. Основное отличие битумов от маловязких «традиционных» нефтей заключается в незначительном содержании легких фракций (0 2 мас.%) и в повышенном содержании (25 75 мас.%) асфальтено-смолистых компонентов, что является причиной их высокой плотности (0,965 1,22 г/см 3 ) и практически неподвижного состояния в пласте [1]. Данное обстоятельство, как правило, усугубляется низкой начальной температурой ( С) в залежах, которые расположены на относительно небольших глубинах ( м). Обобщение имеющегося опыта позволяет сделать вывод о том, что извлечение битумов из пласта скважинными методами возможно только в случае существенного снижения их вязкости (до уровня мпа с). Наиболее часто используемым способом снижения вязкости является нагрев пласта закачкой теплоносителя пара. Паротепловое воздействие оказывается более эффективным при использовании пары горизонтальных скважин верхней (нагнетательной) и нижней (добывающей). К недостаткам метода вытеснения паром следует отнести энергозатратность, необходимость применения высококачественной чистой воды для парогенераторов и вынос песка после прогрева и подхода фронта пара к добывающим скважинам. Главным критерием в паротепловых методах является зависимость от источника природного газа, используемого для выработки пара; при этом для добычи одной тонны битума требуется в среднем сжечь до 300 кг газа. Альтернативным вариантом паротеплового воздействия является закачка в пласт различных растворителей, что позволяет разжижать битумы, фактически превращая их в маловязкие традиционные нефти. Варианты разработки месторождений битумов на основе снижения их вязкости путем закачки в пласт конденсата, добываемого на соседних месторождениях, или дистиллятных фракций, получаемых при первичной переработке 1

2 добываемых нефтей, предложены в работе [2]. Известны проекты разработки Русского, Северо-Комсомольского и Ваньеганского месторождений высоковязкой нефти с использованием конденсата из нижезалегающих пластов или близко расположенных Заполярного, Северо-Губкинского и Варьеганского газоконденсатных месторождений [3]. В исходных параметрах расчетов принято, что вязкость добываемой смеси (нефть+конденсат) необходимо снизить до 50 мпа с. В Канаде скважинные методы добычи битумов основаны на циклической закачке пара (CyclicSteamStimulation CSS) и парогравитационном дренировании (Steam- AssistedGravityDrainage SAGD). В последнее время интенсивно разрабатываются различные нетепловые методы добычи битумов на основе закачки углеводородных растворителей. Например, в технологии VAPEX, как и в SAGD, используются две горизонтальные скважины, причем нагнетательная расположена в верхней части пластаколлектора, а добывающая в нижней [4]. Этан и (или) пропан-бутан закачиваются в скважину, расположенную в верхней части пласта. Снижение вязкости битума достигается за счет разжижения его растворителем, в результате чего смесь битумрастворитель самотеком спускается вниз в добывающую скважину. Процесс может осуществляться в различных вариантах: для пары горизонтальных скважин, для одиночной горизонтальной скважины или для системы из вертикальных и горизонтальных скважин. Использование углеводородных растворителей позволяет успешно разрабатывать коллекторы с повышенным глиносодержанием, где неприменимы методы с использованием пара, а также существенно снижает энергозатраты. Основные критерии для применения технологии VAPEX предполагают следующие начальные условия: толщина продуктивного пласта >12 м, вязкость битума в пластовых условиях > 600 мпа с, горизонтальная проницаемость > 1000 мкм 2, вертикальная проницаемость > 200 мкм 2. Утверждается [5], что по сравнению с методами SAGD преимуществами данной технологии являются: - снижение капиталовложений на 75%; - уменьшение эксплуатационных затрат на 50%; - снижение количества сжигаемого газа на 85%. К негативным факторам методов добычи битумов на основе закачки углеводородных растворителей можно отнести меньшую скорость процессов разжижения битума, связанную с малой величиной коэффициентов диффузии области контакта 2

3 растворитель-битум. Поэтому для обеспечения прежних объемов добычи потребуется ввод в эксплуатацию дополнительных скважин. В некоторых случаях применения VAPEX в зоне контакта отмечалось снижение проницаемости пласта из-за интенсивного образования асфальтено-смолистых отложений. В настоящее время также используются методы совместной закачки пара и растворителя: расширенное (улучшенное) растворителем парогравитационное воздействие ExpandingSolvent SAGD (ES SAGD), технология с добавкой растворителя SolventAidedProcess (SAP), чередование закачки пара и растворителя SteamAlternatingSolvent (SAS), в качестве которого в основном используются пропанбутан или пентан-гексановая фракция (нафта). По мнению зарубежных специалистов, для достижения высокой степени нефтеотдачи необходимый уровень вязкости, например битумов Атабаски, должен понизиться до 10 мпа с, в то время как их вязкость в пластовых условиях составляет не менее мпа с [6]. Использование SAP значительно повышает энергетическую эффективность SAGD за счет уменьшения количества тепла для необходимого снижения вязкости битума. В работе [7] на основе численного моделирования, проведенного с точки зрения интенсификации добычи и повышения нефтеотдачи пласта с применением метода ES- SAGD, показано, что в технологии совместного нагнетания пара и углеводородного растворителя наиболее эффективными из рассмотренных в ряду пропан-бутан-пентангексан н-алканов являются пентан и гексан. Однако в настоящее время отсутствуют достоверные сведения о закономерностях процессов физической (конвективной) дисперсии и молекулярной диффузии в зоне контакта нефть растворитель в зависимости от геолого-физических условий и состава залегающих флюидов, что препятствует получению сопоставимых экспериментальных и расчетных базовых параметров для создания технологических проектов разработки месторождений битумов с использованием углеводородных растворителей. В случае использования в качестве растворителей легких алкановых углеводородов необходимы данные об объемах осаждающихся асфальтенов в нефтенасыщенном пласте. Для решения указанных выше задач проведено экспериментальное моделирование физико-химического воздействия углеводородных растворителей на нефтенасыщенный пласт с использованием лабораторных модельных установок. Основной задачей являлось определение динамики скорости извлечения битумов в зависимости от их состава и 3

4 условий в пласте (температрура и проницаемость). Кроме того, был проведен анализ изменения состава битумов в продуктивном пласте при воздействии на него растворителями на основе легкокипящих н-алканов, что дает возможность определить физико-химические факторы и условия для повышения коллоидной стабильности асфальтеновых компонентов в процессе извлечения. Полученные результаты позволяют выявить физико-химические основы технологии извлечения битумов из пласта и подготовить проведение опытно-промышленных испытаний. Предварительные исследования позволили оценить эффективность использования углеводородных растворителей для обоснования новых методов разработки залежей битумов путем снижения их вязкости до уровня обычных добываемых нефтей. Исследования проведены на образцах битумов разрабатываемых Мордово-Кармальского и Ашальчинского месторождений, а также на образцах, полученных из разведочной скважины Горского месторождения. В качестве растворителей испытывались различные индивидуальные углеводороды, нефтяные фракции и побочные углеводородные продукты нефтехимических производств, в которых в различных пропорциях представлены углеводороды алифатического, алициклического и ароматического типов. Измерения вязкости смесей битумов с различными растворителями в интервале температур С позволили определить основные начальные условия их применения в технологических процессах. - Для снижения вязкости битумов в пластовых условиях до уровня сп с использованием растворителей их необходимое количество составляет 10 25% об в зависимости от вязкости залегающих флюидов. - Снижение необходимого количества растворителя может достигаться за счет увеличения температуры в пласте, в частности за счет совместной закачки теплоносителя (пар, парогаз и др.). Так, при повышении температуры в пласте до С для большинства битумов достаточно будет 5 10% об. - В качестве базовой фракции вполне приемлемыми для снижения вязкости битумов являются легкие фракции высокосернистых (карбоновых) нефтей. Увеличение доли низкокипящих ароматических углеводородов в составе нефтяной фракции (растворителя) будет способствовать повышению эффективности снижения вязкости битумов. 4

5 - Использование растворителей, состоящих только из низкокипящих алифатических углеводородов (пропан-бутан, газовый бензин, широкая фракция легких углеводородов), в зависимости от состава битумов и количества добавленной фракции приводит к коагуляции асфальтенов и, как следствие, к возможной кольматации порового пространства с последующим снижением коэффициента вытеснения. - Эффективность снижения вязкости битумов при использовании углеводородных побочных продуктов нефтехимических производств существенно ниже, чем при использовании легких нефтяных фракций. Варианты применения подобных углеводородных систем могут быть основаны на использовании в качестве оторочки перед закачкой основного растворителя или компаундирования с нефтяными фракциями для их удешевления. Для проведения модельных экспериментов использованы образцы битумов Ашальчинского и Мордово-Кармальского месторождений. Выбран базовый углеводородный растворитель петролейный эфир (смесь пентан+гексан). Проницаемость модели пласта составляла 270 и 540 мд (фракции песка 0,125 0,250 мм и 0,250 0,315 мм соответственно), содержание битума в породе 5 мас.%, температура 10, 20 и 40 С. Экспериментальная установка по моделированию физико-химического воздействия растворителей на нефтенасыщенный пласт представляет собой прозрачную камеру из органического стекла с размерами 10х10х1 см. Для оценки скорости извлечения битума фиксировался определенный объем извлекаемой смеси битум+растворитель во времени. Процесс вытеснения осуществлялся под действием силы тяжести сверху вниз при атмосферном давлении. Для анализа остаточного битума после завершения процесса вытеснения установку разбирали и весь объем песка в модели разделяли на 9 секторов. Остаточный битум из каждого сектора экстрагировали бензолом. Общая схема экспериментальной установки представлена на рис. 1. Результаты экспериментов свидетельствуют об общем механизме извлечения битумов растворителем. На первом этапе отмечается повышенный выход битума из модели с максимальной скоростью, которая в большинстве случаев спустя некоторое время стабилизируется. Стабилизация скорости выхода битума из модели возникает при переходе режима вытеснения от дисперсионного к диффузионному. Анализ полученных результатов по диаграммам зависимости количественного выхода битумов во времени и скорости их извлечения растворителем позволяет сделать несколько заключений: 5

6 с увеличением проницаемости коллектора от 270 до 540 мд наблюдается более высокая скорость извлечения битумов растворителем, в то время как количественный выход битумов во времени меняется незначительно; влияние температуры в интервале С на количественный выход битумов во времени проявляется незначительно. Однако отмечается снижение скорости извлечения битумов в начальном этапе при повышении температуры, что приводит к более равномерному вытеснению в целом; при одинаковых условиях вытеснение менее вязкого Мордово-Кармальского битума происходит быстрее, чем вытеснение Ашальчинского битума. Рис. 1. Схема экспериментальной установки по моделированию физико-химического воздействия растворителей на нефтенасыщенный пласт На рис. 2 представлены результаты экспериментов в виде диаграмм скорости извлечения Ашальчинского битума из модели с проницаемостью 270 мд. Петролейный эфир обладает разной растворяющей способностью по отношению к асфальтенам и смолам, поэтому для оценки состава вытесняемых фракций из модели пласта необходимы характеристики данных компонентов битумов. Одним из основных показателей, связанным с асфальтено-смолистыми компонентами и часто 6

7 используемым для характеристики нефтей, является поглощение в видимой области спектра, или оптическая плотность. Для характеристики Ашальчинского и Мордово- Кармальского битумов анализировалось изменение оптической плотности битумов при различных длинах волн в интервале нм, в котором в наименьшей степени проявляется нелинейность спектра. На рис. 3 представлены спектры оптического поглощения 0,5%-ных растворов в толуоле Ашальчинского и Мордово-Кармальского битумов. Рис. 2. Скорость извлечения Ашальчинского битума при различных температурах (проницаемость 270 мд) Результаты определения оптической плотности битумов выражены в виде коэффициента светопоглощения (Ксп), расчет которого осуществлялся по формуле: Ксп = D / 0,4343 c l, где D оптическая плотность битума; с концентрация раствора битума, мас.%; l толщина кюветы, см. Согласно представленным данным, изменение Ксп битумов при различных длинах волн происходит пропорционально (рис. 3), и в последующем анализе использовалось значение Ксп при 630 нм. 7

8 Рис. 3. Спектры оптического поглощения 0,5%-ных растворов в толуоле Ашальчинского и Мордово-Кармальского битумов Для выяснения особенностей изменения состава извлекаемых битумов, полученных вытеснением из модели пласта, определен их Ксп. Для сравнения на каждой диаграмме первым номером присутствует значение Ксп (в виде треугольника) исходного битума (рис. 4, 5). Рис. 4. Изменение Ксп в процессе вытеснения Мордово-Кармальского битума из модели пласта при Т=20 С (проницаемость 270 мд) 8

9 Рис. 5. Изменение Ксп в процессе вытеснения Ашальчинского битума из модели пласта при Т=20 С (проницаемость 270 мд) Полученные данные по изменению Ксп вытесняемых из модели битумов свидетельствуют об общих закономерностях изменения их состава в процессе извлечения растворителем. Так, во всех случаях происходит снижение Ксп битума по мере вытеснения из модели пласта растворителем, что связано с осаждением асфальтеносмолистых компонентов. Для Ашальчинского битума Ксп резко уменьшается в начальной стадии, а последующее изменение в процессе вытеснения минимально, т.е. процесс осаждения асфальтено-смолистых компонентов происходит в начальной стадии эксперимента. Динамика снижения Ксп Мордово-Кармальского битума имеет плавный характер, что связано с постепенным осаждением асфальтено-смолистых компонентов. Таким образом, для Ашальчинского битума характерна более высокая степень коллоидной дестабилизации при вытеснении растворителем на основе н-алканов. Для повышения коллоидной стабильности асфальтеновых компонентов битумов в процессе их вытеснения легкокипящими н-алканами проведен экспериментальный подбор химических добавок. В первую очередь определялось минимальное количество ароматического углеводорода (толуол) в составе базового растворителя на основе н- алканов (петролейный эфир 40-70) для предотвращения коллоидной дестабилизации природных битумов и образования асфальтеновых отложений. В качестве объектов изучения использовались битумы из эксплуатационных скважин Ашальчинского, Мордово-Кармальского месторождений и битум Екатериновского месторождения, отобранный в 1985 г. из разведочной скважины (табл. 6). 9

10 Характеристики исследуемых битумов Таблица 6 Месторождение, п/п скв., дата отбора 1 Ашальчинское скв 232, 2006 г. 2 Ашальчинское скв. 232, 2007 г. 3 Мордово-Кармальское скв. 177, 2009 г. 4 Мордово-Кармальское скв. 177, 2010 г. 5 Екатериновское 1985 г. Плотность, Ксп Содержание при 20 0 С, г/см 3 при 570 нм асфальтенов, мас.% 0,949 6,52 6,4 0,964 7,05 6,4 0,949 4,81 6,3 0,945 5,17 3,7 1,074 14,09 14,6 В результате оценки изменения количества осадка асфальтенов при добавлении к битуму 20-кратного избытка смеси петролейного эфира с толуолом выявлено, что для полного прекращения осаждения асфальтенов для различных битумов минимальная доля толуола в смеси с петролейным эфиром должна составлять не менее 25% (рис. 6). Кроме ароматических углеводородов, эффектом ингибирования процесса выпадения асфальтенов обладают различные природные и синтетические полярные гетероатомные вещества и соединения. Для количественной оценки эффекта ингибирования экспериментально обоснована возможность использования метода спектрофотометрии в видимом диапазоне для контроля процесса осаждения асфальтенов при разбавлении битумов н-алканами с добавками различных ингибиторов. Метод основан на анализе коэффициента светопоглощения деасфальтизатов и позволяет без измерения количества осадка асфальтенов судить об эффективности ингибирования различными соединениями и веществами. 10

11 Рис. 6. Снижение выхода асфальтенов в зависимости от доли толуола в смеси с петролейным эфиром при добавлении к битуму 20-кратного избытка смеси На примере битума Ашальчинского месторождения проведен сопоставительный анализ эффективности ингибирования различных веществ и соединений. Сравнивались добавки к петролейному эфиру нефтяных смол, нонилфенола, фенолоформальдегидных оксиэтилированных смол, линейного алкилбензола, альфа-олефинов С12 С14, изопропанола, ацетона. В результате показано, что наиболее эффективными ингибиторами процесса осаждения асфальтенов являются нефтяные смолы и нонилфенол. Для полного прекращения образования осадка асфальтенов их количество должно составлять 7 8% в смеси с петролейным эфиром (рис. 7). В целом, полученные результаты экспериментальных лабораторных работ обосновывают возможность перехода к этапу опытно-промышленных испытаний на участке месторождения битумов в Республике Татарстан по технологии их извлечения путем закачки композиционного растворителя в системе горизонтальных скважин. Закачка растворителей на основе широкой фракции легких углеводородов может осуществляться как отдельно, так и совместно с паром, в циклическом или постоянном режиме. 11

12 Рис. 7. Эффективность ингибирования отложений асфальтенов в зависимости от доли различных добавок в петролейном эфире Основные выводы 1. С увеличением проницаемости и температуры в пласте скорость вытеснения битумов растворителем увеличивается, однако влияние данных факторов является незначительным. При повышении температуры до 40 0 С вытеснение битумов растворителем происходит преимущественно в диффузионном режиме, что позволяет прогнозировать скорость извлечения и, соответственно, темпы разработки месторождения. 2. Для контроля процессов осаждения асфальтено-смолистых компонентов в пласте при вытеснении битумов легкокипящими алифатическими углеводородами обоснована возможность использования метода фотометрии с определением изменений коэффициента светопоглощения (оптической плотности) добываемой продукции. 3. Выявлено, что для полной коллоидной стабилизации асфальтеновых компонентов битумов при воздействии композиционными углеводородными растворителями необходимо, чтобы доля ароматических углеводородов составляла не менее 25% в общем объеме растворителя на основе легкокипящих алкановых углеводородов. 12

13 4. Использование нефтяных смол или синтетических нонилфенолов в составе растворителя на основе легкокипящих алкановых углеводородов является более эффективным для стабилизации асфальтенов по сравнению с использованием ароматических углеводородов. ЛИТЕРАТУРА 1. Гольдберг И.С. Основные закономерности размещения битумов на территории СССР / Закономерности формирования и размещения скоплений природных битумов: тр. ВНИГРИ. Л., С Грайфер В.И., Максутов Р.А., Заволжский В.Б., Якимов А.С. Технико-технологические основы освоения запасов битумных нефтей на базе инноваций // Технологии ТЭК Халимов Э.М., Колесникова Н.В. Промышленные запасы и ресурсы и ресурсы природных битумов и сверхвысоковязких нефтей России, перспективные геотехнологии их освоения // Геология нефти и газа Butler R.M., Mokrys I.J. A new process (VAPEX) for recovering heavy oils using hot water and hydrocarbon // Vapor. J. Can. Pet. Tech Vol. 30. P Nghiem L.X., Kohse B.F., Sammon P.S. Compositional simulation of the VAPEX process // J. Can Petrol. Technol Vol. 40, N 8. P Gates I.D. Design of the injection strategy in expanding-solvent steam-assisted gravity drainage // Proceedings of the Second CDEN International conference on design education, innovation, and practice Kananaskis, Alberta, Canada, July 18 20, Alberta, P Ali Yazdani, Brij B. Maini. Modeling of the VAPEX process in a very large physical model // Energy&Fuels Vol. 22. P Ибатуллин Т.Р. Повышение эффективности технологии парогравитационного воздействия с применением углеводородных растворителей // Разраб. и эксплуатация нефт. и газовых месторождений С

docplayer.ru

способ добычи сверхвязкой нефти - патент РФ 2395675

При добыче сверхвязкой нефти строят вертикальную скважину до проектной глубины из блочных цилиндрических колец с выемкой породы с торцевой внутренней площади. Нижний торец первого цилиндрического кольца снабжают кольцевым ножом. Вскрывают пласт горизонтальными скважинами в виде перфорированных труб, снабженных фильтрами, центраторами и торцевыми наконечниками с соплами. Подвод теплоносителя в пласт осуществляют через верхний коллектор, дистанционно управляемые задвижки, перфорированные трубы и камеры горизонтальных кондукторов. Сбор продукции в подземную емкость осуществляют через перфорированные трубы и камеры горизонтальных кондукторов. Для откачки продукции применяют любые известные насосы, способные эффективно работать в этих условиях. Расстояния между рядами горизонтальных скважин по вертикали и их количество определяют в зависимости от мощности пласта и принятой технологии добычи. Перед вдавливанием перфорированной трубы в пласт в ее центральный канал помещают герметизирующую эластичную съемную оболочку. Подачу теплоносителя в горизонтальные скважины при помощи верхних коллекторов и дистанционно управляемых задвижек осуществляют через часть перфорированных труб и/или камер горизонтальных кондукторов, периодически меняя их сочетание при помощи дистанционно управляемых задвижек согласно технологическому режиму эксплуатации. Повышается эффективность добычи сверхвязкой нефти. 6 з.п. ф-лы, 8 ил.

Изобретение относится к области нефтяной промышленности, а более конкретно, к способам добычи углеводородов скважинными методами со вскрытием пласта горизонтальными каналами с тепловым воздействием на него и может быть использовано для добычи сверхвязкой нефти и природных битумов.

Известен способ разработки залежей высоковязких нефтей и битумов (патент РФ № 2246001, Е21В 43/24, опубл. Бюл. № 4 от 10.02.2005 г.), включающий строительство двухустьевой скважины, горизонтальная перфорированная часть которой проходит по пласту, а устьевые участки соединяют наземным участком в виде дугообразного трубопровода с образованием замкнутого канала, внутри которого помещают дополнительную колонну труб, внутри которой размещают замкнутый тяговый элемент с поршнями, приводимый в движение наземным приводом. В основу способа положена задача повышения эффективности системы за счет реализации процесса непрерывного глубинного насосного вытеснения нефти в равнопроходном замкнутом гидравлическом канале.

Залежи высоковязких нефтей и битумов, залегая на небольших глубинах, характеризуются низкими пластовыми давлениями, высокой вязкостью и малой подвижностью продукции в пласте. Для осуществления предлагаемого способа необходимо построить сложное, дорогое и разовое техническое сооружение, заключающееся в строительстве скважины по заданной замкнутой траектории и громоздкой наземной части для привода и системы приема продукции. Без применения дополнительных технологических приемов продукция не будет поступать из пласта в перфорированную часть скважины в достаточном количестве. В этих условиях эффективность способа не может быть высокой.

Наиболее близким является способ добычи нефти подземными горизонтальными скважинами (патент РФ № 2060377, Е21В 43/24, 7/04, 21/00, опубл. Бюл. № 14 от 20.05.1996 г.) с применением теплового воздействия на продуктивный пласт, включающий строительство вертикального шахтного ствола, сверху закрытого герметичной крышкой, вскрывающего продуктивный пласт на всю его мощность, сооружение подземной рабочей камеры, изолированной от рудничной атмосферы, бурение с дневной поверхности горизонтальных нагнетательных и добывающих скважин в два яруса, устья которых находятся в подземной рабочей камере, закачку в продуктивный пласт через нагнетательные скважины теплоносителя, подаваемого с дневной поверхности по паропроводу, извлечение из продуктивного пласта добывающими скважинами в подземную рабочую камеру нефти, сбор ее в емкость в виде подъемных скважин и откачку на дневную поверхность эрлифтными подъемниками.

Недостатком способа является то, что строить технически сложные, дорогие и разовые сооружения на месторождениях сверхвязких нефтей и природных битумов, расположенных под обрабатываемыми землями и населенными пунктами на глубинах 40-250 метров, имеющих небольшие мощности пластов, пластовые давления и запасы, не всегда экономически целесообразно. Строительно-монтажные работы с применением сложных металлоконструкций для рабочей подземной камеры диаметром 20-30 метров, большого количества железобетона, обсадных труб, насосно-компрессорных труб повысит себестоимость строительства. Кроме этого при откачке продукции эрлифтными подъемниками не исключаются условия для образования стойких эмульсий, что потребует дополнительных затрат на ее дальнейшую подготовку. Разбуривание пласта горизонтальными скважинами с поверхности с применением обсадных труб и подъемом выбуренной породы на поверхность за счет циркуляции промывочной жидкости повлечет загрязнение зоны пласта и усложнит освоение этих скважин впоследствии. Невозможно применять гибкие технологии воздействия на пласт без переналадки подземного оборудования. После полной выработки запасов залежи проблематично утилизировать скважину с соблюдением экологических требований. Все это снижает эффективность применения известного технического предложения.

Технической задачей предложения является повышение эффективности добычи сверхвязкой нефти за счет уменьшения отводимых для этих целей сельскохозяйственных земель, сроков строительства скважины и себестоимости, возможности применения эффективных технологий воздействия на пласт через горизонтальные скважины без переналадки оборудования, увеличения дебита, уменьшения общего количества насосов, исследования, обслуживания и ремонта горизонтальных скважин и насосов с применением поверхностного оборудования, предварительной подготовки продукции в подземной емкости с использованием эффективных методов и применения для ее откачки высокопроизводительных современных насосов.

Поставленная задача решается способом добычи сверхвязкой нефти, включающим строительство вертикальной скважины, вскрытие пласта из вертикальной скважины горизонтальными скважинами, подвод теплоносителя в пласт, сбор продукции в подземную емкость и откачку ее на поверхность.

Новым является то, что строят вертикальную скважину до проектной глубины из блочных цилиндрических колец с предварительно изготовленными на них технологическими отверстиями и закладными элементами с контрольным монтажом и демонтажом необходимых устройств, соединяя их между собой жестко и герметично на поверхности и наращивая сверху вниз через направляющий кондуктор под весом, с одновременной выемкой породы с торцевой внутренней площади, причем нижний торец первого цилиндрического кольца снабжают кольцевым ножом, а технологические отверстия снятых выступающих устройств временно герметизируют, закольцевые пространства выше кровли и ниже подошвы пласта герметизируют, вскрывают пласт из вертикальной скважины согласно проекту горизонтальными скважинами в виде перфорированных труб, снабженных фильтрами, центраторами и торцевыми наконечниками с соплами, методом их вдавливания через центральные направляющие каналы горизонтальных кондукторов, герметично соединенных со стенками вертикальной скважины и снабженных фильтрами и камерами, соединенными через дистанционно управляемые задвижки, верхние и нижние коллекторы соответственно с паропроводом и подземной емкостью, которые также соединены через дистанционно управляемые задвижки, верхние и нижние коллекторы соответственно с паропроводом и подземной емкостью, а их центральные каналы закрывают равнопроходными задвижками, подвод теплоносителя в пласт осуществляют через верхний коллектор, дистанционно управляемые задвижки, перфорированные трубы и камеры горизонтальных кондукторов при закрытых остальных задвижках, сбор продукции в подземную емкость осуществляют через перфорированные трубы и камеры горизонтальных кондукторов, дистанционно управляемые задвижки и нижний коллектор при закрытых остальных задвижках, а для откачки продукции применяют любые известные насосы, способные эффективно работать в этих условиях.

Новым является то, что расстояния между рядами горизонтальных скважин по вертикали и их количество определяют в зависимости от мощности пласта и принятой технологии добычи, каждую скважину ряда соединяют через дистанционно управляемую задвижку и верхний коллектор с паропроводом, а через дистанционно управляемую задвижку и нижний коллектор - с подземной емкостью, которые могут быть как нагнетательными, так и добывающими.

Новым является то, что перед вдавливанием перфорированной трубы в пласт в ее центральный канал помещают герметизирующую эластичную съемную оболочку, в процессе вдавливания внутрь него подают горячий растворитель на углеводородной основе, а после вдавливания затрубный торцевой участок горизонтального кондуктора герметизируют.

Новым является то, что подачу теплоносителя в горизонтальные скважины при помощи верхних коллекторов и дистанционно управляемых задвижек осуществляют через часть перфорированных труб и/или камер горизонтальных кондукторов, периодически меняя их сочетание при помощи дистанционно управляемых задвижек согласно технологическому режиму эксплуатации, при этом другие перфорированные трубы и/или камеры горизонтальных кондукторов изолированы или через дистанционно управляемые задвижки и нижние коллекторы сообщены с подземной емкостью.

Новым является то, что продукция пласта из горизонтальных скважин поступает в подземную емкость через дистанционно управляемые задвижки и нижние коллекторы из части перфорированных труб и/или камер горизонтальных кондукторов, периодически меняя их сочетание при помощи дистанционно управляемых задвижек согласно технологическому режиму эксплуатации, при этом другие перфорированные трубы и/или камеры горизонтальных кондукторов изолированы или через дистанционно управляемые задвижки и коллекторы сообщены с паропроводом.

Новым является то, что при эксплуатации горизонтальных скважин геофизические исследования, обслуживание и ремонт выполняют с применением поверхностного оборудования с гибким рукавом с необходимым набором приборов и инструментов через герметизируемые центральные каналы, с одновременным сбором продукции через дистанционно управляемые задвижки и нижний коллектор в подземной емкости.

Новым является то, что насосы для откачки продукции размещают в дополнительной герметичной вертикальной скважине, снабженной в перфорированной зоне подземной емкости фильтром и соединенной с системой улавливания легких фракций.

На фиг.1 приведена схема строительства вертикальной скважины.

На фиг.2 - фрагмент цилиндрического железобетонного кольца с кольцевым ножом по выноске А фиг.1.

На фиг.3 - фрагмент соединения цилиндрических железобетонных колец с закладными элементами по выноске Б фиг.1.

На фиг.4 приведена общая схема размещения оборудования в скважине (элементы других горизонтальных скважин на заднем плане между коллекторами условно не показаны).

На фиг.5 - разрез В-В по фиг.4.

На фиг.6 - схема строительства горизонтальной скважины.

На фиг.7 - фрагмент перфорированной трубы горизонтально скважины с фильтром, эластичной съемной оболочкой и наконечником по выноске Г фиг.6.

На фиг.8 - фрагмент коллектора системы очистки емкости по выноске Д фиг.4.

Способ добычи сверхвязкой нефти (далее нефти) осуществляют следующим образом. По проекту изготавливают все оборудование для строительства скважины и производят предварительную сборку и разборку основных элементов конструкции на поверхности. Для обсаживания вертикальной скважины применяют цилиндрические железобетонные кольца (кольца), способные работать в этих условиях. Технологические отверстия (не показаны) на кольцах снятых выступающих устройств временно герметизируют. Для вертикальной скважины строят направляющий кондуктор 1 (фиг.1) с проходным диаметром для колец 2 и высотой более диаметра вертикальной скважины. Диаметр колец определяют проектом, и он может быть 2-6 метров. Грузоподъемным устройством (не показано) вводят первое кольцо 2 с кольцевым ножом 3 (фиг.2) в направляющий кондуктор 1 (фиг.1), причем высота кольца 2 больше высоты кондуктора 1. Далее вынимают породу с внутренней торцевой площади кольца 2, например, грейфером (не показан), которое под собственным весом начинает опускаться вниз. Затем устанавливают следующее кольцо 2, предварительно поместив герметизирующий состав 4 (фиг.3) в стык их сопряжения и жестко соединяют между собой, например, сваркой закладных элементов 5 по периметру. В качестве герметизирующего состава можно применять цементный раствор. Таким же образом наращивают последующие кольца 2 сверху вниз через кондуктор 1 до проектной глубины вертикальной скважины 6 (фиг.1). Для уменьшения трения колец 2 о породу применяют известные методы и вещества, например тиксотронный раствор на основе специальных глин. Затем цементируют закольцевые пространства выше кровли 7 (фиг.4) и ниже подошвы 8 пласта 9. Закрывают нижнюю часть вертикальной скважины на уровне подошвы 8 пласта 9 горизонтальной герметичной теплоизолированной крышкой 10 (крышка), образуя емкость 11 для сбора продукции. В крышке 9 предусматривают герметично закрываемый вход для монтажа и обвязки элементов оборудования в емкости 11 (не показан). Сверху вертикальную скважину закрывают герметичной камерой 12 с полом 13, в которой впоследствии размещают рабочий лифт, систему вентиляции и другое необходимое оборудование (не показаны). Строят дополнительную герметичную скважину 14 с углублением 15 от забоя вертикальной скважины и перфорированным участком 16 в зоне подземной емкости 11. В емкости 11 монтируют перфорированный коллектор 17 с трубопроводом 18, которую через дистанционно управляемую задвижку 19 (задвижка) сообщают с паропроводом 20.

Количество необходимых горизонтальных скважин 21 определяют проектом с учетом мощности пласта и принятой технологией добычи. Их количество может быть более 16 в одном сечении и несколько рядов по высоте. Строительство горизонтальных скважин 21 поясним на примере строительства одной из них. Открывают (снимают заглушку) технологическое отверстие (не показан) на стенке кольца 2 и горизонтально разбуривают пласт 9 на глубину до 20 метров известными средствами, например шнеком. В образовавшуюся полость 22 помещают горизонтальный кондуктор 23, включающий центральный направляющий канал 24 в виде трубы, по торцам 25 и 26 соединенной с наружной оболочкой 27 в виде перфорированной трубы большего диаметра с противопесочным фильтром 28 (фильтр), образуя кольцевую камеру 29 (камера), причем на торце 25 выполняют отверстия (не показаны). Оболочку 27 герметично соединяют со стенкой вертикальной скважины 6. Далее камеру 29 через задвижки 19 соединяют с верхним 30 и нижним 31 коллекторами, которые сообщены соответственно с паропроводом 20 и емкостью 11. В направляющий канал 24 горизонтального кондуктора 21 вводят через толкающее устройство 32 перфорированную трубу 33 (фиг.6), снабженную фильтрами 34, центраторами 35 и торцевым наконечником 36 с соплами 37, поместив в ее центральный канал 38 герметизирующую эластичную съемную оболочку 39 (оболочка), которая закрывает ее перфорированные участки в процессе вдавливания в пласт 9. Для уменьшения сопротивлений при вдавливании перфорированной трубы 33 в нее подают через гибкий рукав 40 наземного оборудования (не показан) и муфту 41 горячий растворитель на углеводородной основе (растворитель), который, вытекая из сопел 37 (фиг.7) наконечника 36, нагревает контактирующую породу пласта 9 (пропитанный сверхвязкой нефтью песок) и уменьшает ее вязкость, создавая эффект смазывания. При этом оболочка 39 под действием давления растворителя герметизирует перфорированные участки трубы 33. В дальнейшем растворитель через камеру 29 (фиг.6) кондуктора 21, задвижку 19, коллектор 31 и трубу 42 попадает в емкость 11. Длина вдавливания труб 33 в пласт 9 должна быть максимальной по техническим возможностям применяемого для этого оборудования и может составлять 700 метров и более, а их перфорированные участки с фильтрами 34 - начиная с расстояния более 25 метров от скважины. Диаметры труб 33 и оболочки 27 горизонтального кондуктора 21 определяют расчетом, и они могут быть порядка соответственно 60 и 100 мм. После достижения проектной длины горизонтальной скважины 21 оболочку 39 убирают или частично оставляют, герметизируют сопряжение с кондуктором 23 (фиг.4), центральный канал 38 соединяют через задвижки 19 с верхним 30 и нижним 31 коллекторами и закрывают равнопроходной задвижкой 43. При ее дальнейшей эксплуатации перемещением оболочки 39 можно регулировать подачу пара на разные участки пласта 9 или вести отбор продукции с его различных участков. Изготавливают оболочку из эластичного материала, например из силиконовой резины, которая может работать при температурах 300°С. Участок 44 после горизонтального кондуктора герметизируют известным способом, например цементируют. Это нужно для того, чтобы закачиваемый в трубы 33 пар не прорывался к вертикальной скважине 6. Труба 33 и горизонтальный кондуктор 23 могут быть как составными, так и сплошными (гибкими), а их материал - металл или неметалл, способный работать в условиях пласта. Сопряжения выходных концов труб 33 с кондуктором 23 и стенкой скважины герметизируют известными способами. Центральный канал 38 трубы 33 через задвижки 19 соединяют с верхним 30 и нижним 31 коллекторами, которые сообщают соответственно с паропроводом 20 и емкостью 11. Таким же образом строят остальные горизонтальные скважины.

Арматуры устьев горизонтальных скважин 21, коллекторы 30 и 31, задвижки 19 и 43, герметичную камеру 12 и другие трубопроводы теплоизолируют (не показаны). Монтаж оборудования в вертикальной скважине 6 производят с использованием рабочего лифта (не показан) и соблюдением правил техники безопасности. Рабочий персонал обеспечивают средствами индивидуальной защиты для работы в этих условиях.

Геофизические исследования, обслуживание и ремонт горизонтальных скважин 21 выполняют с применением известного поверхностного оборудования с гибким рукавом с необходимым набором приборов и инструментов, с одновременным сбором продукции через задвижки 19 и нижний коллектор 31 в подземной емкости 11.

Насос 45 для откачки нефти выбирают для каждого конкретного случая с учетом его вязкости, температуры, наличия механических примесей и т.д. Могут применяться штанговые глубинно-насосные установки, погружные электроцентробежные насосные установки, винтовые насосы и т.д. Монтаж, обслуживание и демонтаж этих насосов производят в дополнительной скважине 14 с поверхности применением известных технологических приемов и оборудования. Внутреннюю полость скважины 14 сообщают через трубопровод 46 с системой улавливания легких фракций (не показана). Для откачки с нижней части емкости воды могут применить дополнительные насосы. Устье дополнительной скважины 14 теплоизолируют и можно закрыть съемной камерой 47.

Для добычи нефти применяют технологию парогравитационного дренирования с закачкой в пласт перегретого пара с температурой порядка 250°С. Сущность технологии заключается в том, что пласт нагревают перегретым паром для снижения вязкости продукции и приведения ее в текучее состояние. Движения пара в пласт 9 и продукции в подземную емкость 11 в общем случае поясняется на примере работы одной горизонтальной скважины 21. Через паропровод 20, верхний коллектор 30, задвижки 19, камеру 29 и скважину 21 пар поступает в пласт 9 и прогревает его. При этом все другие задвижки закрыты. Сбор продукции в подземную емкость 11 осуществляют через скважину 21, камеру 29, задвижки 19 и коллектор 31. При этом все другие задвижки закрыты. Возможны другие варианты. Пар из коллектора 30, задвижку 19 и камеру 29 поступает в пласт 9, а продукция из скважины 21, задвижку 19 и коллектор 31 - в емкость 11. При этом все другие задвижки закрыты. Пар из коллектора 30, задвижку 19 и скважину 21 поступает в пласт 9, а продукция из камеры 29, задвижку 19 и коллектор 31 - в емкость 11. При этом все другие задвижки закрыты.

Совместную работу всех горизонтальных скважин осуществляют следующим образом. Подачу пара в горизонтальные скважины 21 при помощи верхних коллекторов 30 и задвижек 19 осуществляют через часть перфорированных труб 33 и/или камер 29 горизонтальных кондукторов 23, периодически меняя их сочетание при помощи задвижек 19 согласно технологическому режиму добычи, при этом другие перфорированные трубы 33 и/или камеры 29 горизонтальных кондукторов 23 изолируют или через нижние коллекторы 31 и задвижки 19 сообщают с емкостью 11. Продукция пласта 9 из горизонтальных скважин 21 поступает в емкость 11 через задвижки 19 и нижние коллекторы 31 из части перфорированных труб 33 и/или камер 29 горизонтальных кондукторов 23, периодически меняя их сочетание при помощи задвижек 19 согласно технологическому режиму добычи, при этом другие перфорированные трубы 33 и/или камеры 29 горизонтальных кондукторов 23 изолируют или через задвижки 19 и коллекторы 30 сообщают с паропроводом 20.

На первом этапе эксплуатации залежи пар закачивают расчетное время через паропровод 20, верхние коллекторы 30 при открытых верхних задвижках 19 во все горизонтальные скважины 21 для более полного прогрева пласта 9. В это время нижние задвижки 19, сообщающие их через нижние коллекторы 31 с емкостью 11, закрыты. После достаточного прогрева пласта 9 открывают нижние задвижки 19, сообщающие камеры 29 через коллектор 31 с емкостью 11, а подачу пара в трубы 33 продолжают. В гравитационном режиме и под действием пластового давления продукция в виде нефти с водой попадает через фильтры 28, камеры 29 и коллектор 31 в емкость 11. В емкости 11 нефть всплывает в воде вверх, механические примеси опадают вниз, а легкие фракции через полость дополнительной скважины 14 и трубопровод 47 поступают в систему их улавливания (не показана), т.е. происходит первичная стадия подготовки продукции. Для ускорения этого процесса можно использовать известные методы и химические реагенты. В зависимости от применяемого технологического режима эксплуатации пласта горизонтальные скважины в горизонтальном сечении и вертикальных рядах могут быть как паронагнетательными, так и эксплуатационными. Например, в верхний ряд всех скважин (или в часть их) закачивают пар, а с нижнего ряда всех скважин (или из части) ведут добычу продукции. В зависимости от принятой технологии эксплуатации пласта могут быть любые варианты совместной эксплуатации горизонтальных скважин. Для интенсификации добычи возможно применение химических реагентов и растворителей. Из емкости 11 продукция поступает в дополнительную скважину 14, и ее откачивают на поверхность насосами 45. В перфорированной части 16 дополнительной скважины 14 можно установить противопесочный фильтр.

Для очистки емкости 11 через паропровод 20, коллектор 30, задвижку 19, трубу 18 в коллектор 17 подают пар, который, выходя из перфорированных отверстий 48 (фиг.8), смешивает механические примеси с водой, образуя пульпу, которую откачивают на поверхность насосом.

Оборудование выполняют во взрывозащищенном быстросборном модульном исполнении, снабжают приборами безопасности, контроля и видеонаблюдения.

Управление технологическими процессами осуществляет оператор с дневной поверхности. После полной выработки залежи съемное оборудование скважины демонтируют, зону пласта герметизируют, при необходимости ее промывают и используют для других целей или засыпают. Во всех случаях обеспечивают экологические требования.

Технико-экономическое преимущество предлагаемого способа добычи сверхвязкой нефти заключается в следующем. Изготовление конструктивных блоков и элементов вертикальной и горизонтальных скважин по проекту на поверхности и их предварительная сборка разборка уменьшают срок, себестоимость дальнейшего строительства и повышает его качество. Значительно уменьшаются площади отводимых для этих целей сельскохозяйственных земель. Несложная схема строительства вертикальной скважины с применением кондуктора для направления цилиндрических колец при их наращивании сверху вниз, жесткое соединение и герметизация их торцевых стыков на поверхности, использование собственного веса на кольцевой нож и известных приемов уменьшения трения колец о породу, а также использование для выемки породы грейфера или других эффективных технологий упрощают строительство. Строительство горизонтальных скважин методом вдавливания через направляющие кондукторов без выемки породы, подача при этом горячего растворителя на углеводородной основе для уменьшения сопротивлений, возможность регулирования эластичной оболочкой подачу пара на ее различные участки или отбора продукции с ее различных участков, а также рациональное использование скважин по гибким эффективным технологиям добычи без переналадки оборудования и значительное увеличения дебита также снижают себестоимость строительства и повышают эффективность добычи. Монтаж и обслуживание насосов с поверхности с применением известных приемов и оборудования, как на обычных скважинах, их эксплуатация в более благоприятных условиях, чем, например, в горизонтальных скважинах, снижают эксплуатационные расходы. Появляется возможность эффективно прогревать пласт с наименьшими потерями тепла закачиваемого пара, собирать продукцию в подземную емкость с большой площади, где происходит ее первичная подготовка, отводить легкие фракции в систему их сбора. Снижается общее количество применяемой насосной техники, и появляется возможность применения высокопроизводительных эффективных насосов. Способ позволяет вскрывать продуктивный пласт с минимальным на него воздействием, применять в зависимости от стадии разработки месторождения различные технологические приемы воздействия на пласт без переналадки оборудования и вести рациональный отбор продукции с различных участков пласта. То что горизонтальные, дополнительная скважины и кольцевые камеры горизонтальных кондукторов снабжены противопесочными фильтрами, исключающими вынос механических примесей, подземная емкость сообщена с системой улавливания легких фракций, а первичная подготовка продукции происходит под землей с использованием для ускорения этого процесса известных эффективных методов и исключены условия для образования стойких эмульсий при ее откачке, уменьшает затраты на общую ее подготовку на поверхности, которая в некоторых случаях может достигать до 60% от общих затрат на добычу. Геофизические исследования, обслуживание и ремонт горизонтальных скважин выполняют с применением известного поверхностного оборудования с гибким рукавом. Управление технологическим процессом добычи нефти осуществляют с поверхности дистанционно по заданной программе и в автоматическом режиме. Решаются вопросы безопасности и экологии.

Приводим некоторые оценочные параметры добычи сверхвязкой нефти предлагаемым способом. Исходные данные: длина горизонтальных скважин - 700+700 м, мощность пласта - 20 м, нефтенасыщенность - 10% (может быть значительно больше), извлечение - 90%, скважина работает 365 дней в году, средний дебит по нефти, при применении парогравитационного режима воздействия на пласт, существующих двухустьевых скважин на Ашальчинском месторождении сверхвязкой нефти - (15-20) т/сут (горизонтальная скважина проложена около 300 м по пласту), плотность нефти - 0,9 т/м3 (может быть больше), количество горизонтальных скважин - 2 ряда × 16 скв. = 32 скв. (в зависимости от принятой технологии добычи количество скважин может быть значительно больше, а часть скважин может быть нагнетательными), стоимость нефти на рынке - 4000 руб./т (ориентировочно, для оценки).

Количество нефти, которое можно извлечь из пласта охватываемой скважиной:

Q=3,14×700×700×20×0,1×0,9×0,9=2492532 т (не учтено поступление нефти из приграничных зон по периметру).

Количество общей выручки от продажи нефти:

Добщ.=2492532×4000=9970128000 руб.

Суточный дебит вертикальной скважины по битуму складывается из суточных дебитов горизонтальных скважин. Считаем, что при увеличении их горизонтальных участков в пласте более чем в два раза увеличится и дебит. Есть сведения, что в Канаде и Венесуэле из горизонтальных скважин длиной 500-700 м добывают высоковязкой продукции порядка 150 т/сут. Принимаем суточный дебит добывающей горизонтальной скважины 75 т/сут. Тогда:

Ссут.=75×16=1200 т/сут (считаем, что половина скважин нагнетательные).

Годовая добыча:

Сгод.=1200×365=438000 т.

Годовая выручка от продажи нефти:

Дгод.=438000×4000=1752000000 руб.

Количество лет работы скважины:

Нлет.=2492532:438000=5,7 лет.

Три скважины, занимающие небольшие земельные участки на поверхности, обеспечат добычу более 1,3 млн тонн сверхвязкой нефти в год.

После выработки запасов залежи нефти скважину можно использовать в качестве подземного резервуара для других целей (для хранения нефти, воды, промышленных отходов, удобрений и т.п.).

Таким образом, применение предлагаемого технического решения повышает эффективность добычи сверхвязкой нефти.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Способ добычи сверхвязкой нефти, включающий строительство вертикальной скважины, вскрытие пласта из вертикальной скважины по ее периметру горизонтальными скважинами, подвод теплоносителя в пласт, сбор продукции в подземную емкость и откачку ее на поверхность, отличающийся тем, что строят вертикальную скважину до проектной глубины из блочных цилиндрических колец, с предварительно изготовленными на них технологическими отверстиями и закладными элементами, с контрольным монтажом и демонтажем необходимых устройств, соединяя их между собой жестко и герметично на поверхности и наращивая сверху вниз через направляющий кондуктор под весом, с одновременной выемкой породы с торцевой внутренней площади, причем нижний торец первого цилиндрического кольца снабжают кольцевым ножом, а технологические отверстия снятых выступающих устройств временно герметизируют, закольцевые пространства выше кровли и ниже подошвы пласта герметизируют, вскрывают пласт из вертикальной скважины, согласно проекта, горизонтальными скважинами в виде перфорированных труб, снабженных фильтрами, центраторами и торцевыми наконечниками с соплами методом их вдавливания через центральные направляющие каналы горизонтальных кондукторов, герметично соединенных со стенками вертикальной скважины и снабженных фильтрами и камерами, соединенными через дистанционно управляемые задвижки, верхние и нижние коллекторы соответственно с паропроводом и подземной емкостью, которые также соединены через дистанционно управляемые задвижки, верхние и нижние коллекторы соответственно с паропроводом и подземной емкостью, а их центральные каналы закрывают равнопроходными задвижками, подвод теплоносителя в пласт осуществляют через верхний коллектор, дистанционно управляемые задвижки, перфорированные трубы и камеры горизонтальных кондукторов при закрытых остальных задвижках, сбор продукции в подземную емкость осуществляют через перфорированные трубы и камеры горизонтальных кондукторов, дистанционно управляемые задвижки и нижний коллектор при закрытых остальных задвижках, а для откачки продукции применяют любые известные насосы, способные эффективно работать в этих условиях.

2. Способ по п.1, отличающийся тем, что расстояния между рядами горизонтальных скважин по вертикали и их количество определяют в зависимости от мощности пласта и принятой технологии добычи, каждую скважину ряда соединяют через дистанционно управляемую задвижку и верхний коллектор с паропроводом, а через дистанционно управляемую задвижку и нижний коллектор - с подземной емкостью, которые могут быть, как нагнетательными, так и добывающими.

3. Способ по п.1, отличающийся тем, что перед вдавливанием перфорированной трубы в пласт в ее центральный канал помещают герметизирующую эластичную съемную оболочку, в процессе вдавливания внутрь него подают горячий растворитель на углеводородной основе, а после вдавливания затрубный торцевой участок горизонтального кондуктора герметизируют.

4. Способ по п.1, отличающийся тем, что подачу теплоносителя в горизонтальные скважины при помощи верхних коллекторов и дистанционно управляемых задвижек осуществляют через часть перфорированных труб и/или камер горизонтальных кондукторов, периодически меняя их сочетание при помощи дистанционно управляемых задвижек согласно технологического режима добычи, при этом другие перфорированные трубы и/или камеры горизонтальных кондукторов изолированы или через дистанционно управляемые задвижки и нижние коллекторы сообщены с подземной емкостью.

5. Способ по п.1, отличающийся тем, что продукция пласта из горизонтальных скважин поступает в подземную емкость через дистанционно управляемые задвижки и нижние коллекторы из части перфорированных труб и/или камер горизонтальных кондукторов, периодически меняя их сочетание при помощи дистанционно управляемых задвижек согласно технологического режима добычи, при этом другие перфорированные трубы и/или камеры горизонтальных кондукторов изолированы или через дистанционно управляемые задвижки и коллекторы сообщены с паропроводом.

6. Способ по п.1, отличающийся тем, что при эксплуатации горизонтальных скважин геофизические исследования, обслуживание и ремонт выполняют с применением поверхностного оборудования с гибким рукавом с необходимым набором приборов и инструментов через герметизируемые центральные каналы, с одновременным сбором продукции через задвижки и нижний коллектор в подземной емкости.

7. Способ по п.1, отличающийся тем, что насосы для откачки продукции размещают в дополнительной герметичной вертикальной скважине, снабженной в перфорированной зоне подземной емкости фильтром и соединенной с системой улавливания легких фракций.

www.freepatent.ru

Способ добычи сверхвязкой нефти

При добыче сверхвязкой нефти строят вертикальную скважину до проектной глубины из блочных цилиндрических колец с выемкой породы с торцевой внутренней площади. Нижний торец первого цилиндрического кольца снабжают кольцевым ножом. Вскрывают пласт горизонтальными скважинами в виде перфорированных труб, снабженных фильтрами, центраторами и торцевыми наконечниками с соплами. Подвод теплоносителя в пласт осуществляют через верхний коллектор, дистанционно управляемые задвижки, перфорированные трубы и камеры горизонтальных кондукторов. Сбор продукции в подземную емкость осуществляют через перфорированные трубы и камеры горизонтальных кондукторов. Для откачки продукции применяют любые известные насосы, способные эффективно работать в этих условиях. Расстояния между рядами горизонтальных скважин по вертикали и их количество определяют в зависимости от мощности пласта и принятой технологии добычи. Перед вдавливанием перфорированной трубы в пласт в ее центральный канал помещают герметизирующую эластичную съемную оболочку. Подачу теплоносителя в горизонтальные скважины при помощи верхних коллекторов и дистанционно управляемых задвижек осуществляют через часть перфорированных труб и/или камер горизонтальных кондукторов, периодически меняя их сочетание при помощи дистанционно управляемых задвижек согласно технологическому режиму эксплуатации. Повышается эффективность добычи сверхвязкой нефти. 6 з.п. ф-лы, 8 ил.

 

Изобретение относится к области нефтяной промышленности, а более конкретно, к способам добычи углеводородов скважинными методами со вскрытием пласта горизонтальными каналами с тепловым воздействием на него и может быть использовано для добычи сверхвязкой нефти и природных битумов.

Известен способ разработки залежей высоковязких нефтей и битумов (патент РФ №2246001, Е21В 43/24, опубл. Бюл. №4 от 10.02.2005 г.), включающий строительство двухустьевой скважины, горизонтальная перфорированная часть которой проходит по пласту, а устьевые участки соединяют наземным участком в виде дугообразного трубопровода с образованием замкнутого канала, внутри которого помещают дополнительную колонну труб, внутри которой размещают замкнутый тяговый элемент с поршнями, приводимый в движение наземным приводом. В основу способа положена задача повышения эффективности системы за счет реализации процесса непрерывного глубинного насосного вытеснения нефти в равнопроходном замкнутом гидравлическом канале.

Залежи высоковязких нефтей и битумов, залегая на небольших глубинах, характеризуются низкими пластовыми давлениями, высокой вязкостью и малой подвижностью продукции в пласте. Для осуществления предлагаемого способа необходимо построить сложное, дорогое и разовое техническое сооружение, заключающееся в строительстве скважины по заданной замкнутой траектории и громоздкой наземной части для привода и системы приема продукции. Без применения дополнительных технологических приемов продукция не будет поступать из пласта в перфорированную часть скважины в достаточном количестве. В этих условиях эффективность способа не может быть высокой.

Наиболее близким является способ добычи нефти подземными горизонтальными скважинами (патент РФ №2060377, Е21В 43/24, 7/04, 21/00, опубл. Бюл. №14 от 20.05.1996 г.) с применением теплового воздействия на продуктивный пласт, включающий строительство вертикального шахтного ствола, сверху закрытого герметичной крышкой, вскрывающего продуктивный пласт на всю его мощность, сооружение подземной рабочей камеры, изолированной от рудничной атмосферы, бурение с дневной поверхности горизонтальных нагнетательных и добывающих скважин в два яруса, устья которых находятся в подземной рабочей камере, закачку в продуктивный пласт через нагнетательные скважины теплоносителя, подаваемого с дневной поверхности по паропроводу, извлечение из продуктивного пласта добывающими скважинами в подземную рабочую камеру нефти, сбор ее в емкость в виде подъемных скважин и откачку на дневную поверхность эрлифтными подъемниками.

Недостатком способа является то, что строить технически сложные, дорогие и разовые сооружения на месторождениях сверхвязких нефтей и природных битумов, расположенных под обрабатываемыми землями и населенными пунктами на глубинах 40-250 метров, имеющих небольшие мощности пластов, пластовые давления и запасы, не всегда экономически целесообразно. Строительно-монтажные работы с применением сложных металлоконструкций для рабочей подземной камеры диаметром 20-30 метров, большого количества железобетона, обсадных труб, насосно-компрессорных труб повысит себестоимость строительства. Кроме этого при откачке продукции эрлифтными подъемниками не исключаются условия для образования стойких эмульсий, что потребует дополнительных затрат на ее дальнейшую подготовку. Разбуривание пласта горизонтальными скважинами с поверхности с применением обсадных труб и подъемом выбуренной породы на поверхность за счет циркуляции промывочной жидкости повлечет загрязнение зоны пласта и усложнит освоение этих скважин впоследствии. Невозможно применять гибкие технологии воздействия на пласт без переналадки подземного оборудования. После полной выработки запасов залежи проблематично утилизировать скважину с соблюдением экологических требований. Все это снижает эффективность применения известного технического предложения.

Технической задачей предложения является повышение эффективности добычи сверхвязкой нефти за счет уменьшения отводимых для этих целей сельскохозяйственных земель, сроков строительства скважины и себестоимости, возможности применения эффективных технологий воздействия на пласт через горизонтальные скважины без переналадки оборудования, увеличения дебита, уменьшения общего количества насосов, исследования, обслуживания и ремонта горизонтальных скважин и насосов с применением поверхностного оборудования, предварительной подготовки продукции в подземной емкости с использованием эффективных методов и применения для ее откачки высокопроизводительных современных насосов.

Поставленная задача решается способом добычи сверхвязкой нефти, включающим строительство вертикальной скважины, вскрытие пласта из вертикальной скважины горизонтальными скважинами, подвод теплоносителя в пласт, сбор продукции в подземную емкость и откачку ее на поверхность.

Новым является то, что строят вертикальную скважину до проектной глубины из блочных цилиндрических колец с предварительно изготовленными на них технологическими отверстиями и закладными элементами с контрольным монтажом и демонтажом необходимых устройств, соединяя их между собой жестко и герметично на поверхности и наращивая сверху вниз через направляющий кондуктор под весом, с одновременной выемкой породы с торцевой внутренней площади, причем нижний торец первого цилиндрического кольца снабжают кольцевым ножом, а технологические отверстия снятых выступающих устройств временно герметизируют, закольцевые пространства выше кровли и ниже подошвы пласта герметизируют, вскрывают пласт из вертикальной скважины согласно проекту горизонтальными скважинами в виде перфорированных труб, снабженных фильтрами, центраторами и торцевыми наконечниками с соплами, методом их вдавливания через центральные направляющие каналы горизонтальных кондукторов, герметично соединенных со стенками вертикальной скважины и снабженных фильтрами и камерами, соединенными через дистанционно управляемые задвижки, верхние и нижние коллекторы соответственно с паропроводом и подземной емкостью, которые также соединены через дистанционно управляемые задвижки, верхние и нижние коллекторы соответственно с паропроводом и подземной емкостью, а их центральные каналы закрывают равнопроходными задвижками, подвод теплоносителя в пласт осуществляют через верхний коллектор, дистанционно управляемые задвижки, перфорированные трубы и камеры горизонтальных кондукторов при закрытых остальных задвижках, сбор продукции в подземную емкость осуществляют через перфорированные трубы и камеры горизонтальных кондукторов, дистанционно управляемые задвижки и нижний коллектор при закрытых остальных задвижках, а для откачки продукции применяют любые известные насосы, способные эффективно работать в этих условиях.

Новым является то, что расстояния между рядами горизонтальных скважин по вертикали и их количество определяют в зависимости от мощности пласта и принятой технологии добычи, каждую скважину ряда соединяют через дистанционно управляемую задвижку и верхний коллектор с паропроводом, а через дистанционно управляемую задвижку и нижний коллектор - с подземной емкостью, которые могут быть как нагнетательными, так и добывающими.

Новым является то, что перед вдавливанием перфорированной трубы в пласт в ее центральный канал помещают герметизирующую эластичную съемную оболочку, в процессе вдавливания внутрь него подают горячий растворитель на углеводородной основе, а после вдавливания затрубный торцевой участок горизонтального кондуктора герметизируют.

Новым является то, что подачу теплоносителя в горизонтальные скважины при помощи верхних коллекторов и дистанционно управляемых задвижек осуществляют через часть перфорированных труб и/или камер горизонтальных кондукторов, периодически меняя их сочетание при помощи дистанционно управляемых задвижек согласно технологическому режиму эксплуатации, при этом другие перфорированные трубы и/или камеры горизонтальных кондукторов изолированы или через дистанционно управляемые задвижки и нижние коллекторы сообщены с подземной емкостью.

Новым является то, что продукция пласта из горизонтальных скважин поступает в подземную емкость через дистанционно управляемые задвижки и нижние коллекторы из части перфорированных труб и/или камер горизонтальных кондукторов, периодически меняя их сочетание при помощи дистанционно управляемых задвижек согласно технологическому режиму эксплуатации, при этом другие перфорированные трубы и/или камеры горизонтальных кондукторов изолированы или через дистанционно управляемые задвижки и коллекторы сообщены с паропроводом.

Новым является то, что при эксплуатации горизонтальных скважин геофизические исследования, обслуживание и ремонт выполняют с применением поверхностного оборудования с гибким рукавом с необходимым набором приборов и инструментов через герметизируемые центральные каналы, с одновременным сбором продукции через дистанционно управляемые задвижки и нижний коллектор в подземной емкости.

Новым является то, что насосы для откачки продукции размещают в дополнительной герметичной вертикальной скважине, снабженной в перфорированной зоне подземной емкости фильтром и соединенной с системой улавливания легких фракций.

На фиг.1 приведена схема строительства вертикальной скважины.

На фиг.2 - фрагмент цилиндрического железобетонного кольца с кольцевым ножом по выноске А фиг.1.

На фиг.3 - фрагмент соединения цилиндрических железобетонных колец с закладными элементами по выноске Б фиг.1.

На фиг.4 приведена общая схема размещения оборудования в скважине (элементы других горизонтальных скважин на заднем плане между коллекторами условно не показаны).

На фиг.5 - разрез В-В по фиг.4.

На фиг.6 - схема строительства горизонтальной скважины.

На фиг.7 - фрагмент перфорированной трубы горизонтально скважины с фильтром, эластичной съемной оболочкой и наконечником по выноске Г фиг.6.

На фиг.8 - фрагмент коллектора системы очистки емкости по выноске Д фиг.4.

Способ добычи сверхвязкой нефти (далее нефти) осуществляют следующим образом. По проекту изготавливают все оборудование для строительства скважины и производят предварительную сборку и разборку основных элементов конструкции на поверхности. Для обсаживания вертикальной скважины применяют цилиндрические железобетонные кольца (кольца), способные работать в этих условиях. Технологические отверстия (не показаны) на кольцах снятых выступающих устройств временно герметизируют. Для вертикальной скважины строят направляющий кондуктор 1 (фиг.1) с проходным диаметром для колец 2 и высотой более диаметра вертикальной скважины. Диаметр колец определяют проектом, и он может быть 2-6 метров. Грузоподъемным устройством (не показано) вводят первое кольцо 2 с кольцевым ножом 3 (фиг.2) в направляющий кондуктор 1 (фиг.1), причем высота кольца 2 больше высоты кондуктора 1. Далее вынимают породу с внутренней торцевой площади кольца 2, например, грейфером (не показан), которое под собственным весом начинает опускаться вниз. Затем устанавливают следующее кольцо 2, предварительно поместив герметизирующий состав 4 (фиг.3) в стык их сопряжения и жестко соединяют между собой, например, сваркой закладных элементов 5 по периметру. В качестве герметизирующего состава можно применять цементный раствор. Таким же образом наращивают последующие кольца 2 сверху вниз через кондуктор 1 до проектной глубины вертикальной скважины 6 (фиг.1). Для уменьшения трения колец 2 о породу применяют известные методы и вещества, например тиксотронный раствор на основе специальных глин. Затем цементируют закольцевые пространства выше кровли 7 (фиг.4) и ниже подошвы 8 пласта 9. Закрывают нижнюю часть вертикальной скважины на уровне подошвы 8 пласта 9 горизонтальной герметичной теплоизолированной крышкой 10 (крышка), образуя емкость 11 для сбора продукции. В крышке 9 предусматривают герметично закрываемый вход для монтажа и обвязки элементов оборудования в емкости 11 (не показан). Сверху вертикальную скважину закрывают герметичной камерой 12 с полом 13, в которой впоследствии размещают рабочий лифт, систему вентиляции и другое необходимое оборудование (не показаны). Строят дополнительную герметичную скважину 14 с углублением 15 от забоя вертикальной скважины и перфорированным участком 16 в зоне подземной емкости 11. В емкости 11 монтируют перфорированный коллектор 17 с трубопроводом 18, которую через дистанционно управляемую задвижку 19 (задвижка) сообщают с паропроводом 20.

Количество необходимых горизонтальных скважин 21 определяют проектом с учетом мощности пласта и принятой технологией добычи. Их количество может быть более 16 в одном сечении и несколько рядов по высоте. Строительство горизонтальных скважин 21 поясним на примере строительства одной из них. Открывают (снимают заглушку) технологическое отверстие (не показан) на стенке кольца 2 и горизонтально разбуривают пласт 9 на глубину до 20 метров известными средствами, например шнеком. В образовавшуюся полость 22 помещают горизонтальный кондуктор 23, включающий центральный направляющий канал 24 в виде трубы, по торцам 25 и 26 соединенной с наружной оболочкой 27 в виде перфорированной трубы большего диаметра с противопесочным фильтром 28 (фильтр), образуя кольцевую камеру 29 (камера), причем на торце 25 выполняют отверстия (не показаны). Оболочку 27 герметично соединяют со стенкой вертикальной скважины 6. Далее камеру 29 через задвижки 19 соединяют с верхним 30 и нижним 31 коллекторами, которые сообщены соответственно с паропроводом 20 и емкостью 11. В направляющий канал 24 горизонтального кондуктора 21 вводят через толкающее устройство 32 перфорированную трубу 33 (фиг.6), снабженную фильтрами 34, центраторами 35 и торцевым наконечником 36 с соплами 37, поместив в ее центральный канал 38 герметизирующую эластичную съемную оболочку 39 (оболочка), которая закрывает ее перфорированные участки в процессе вдавливания в пласт 9. Для уменьшения сопротивлений при вдавливании перфорированной трубы 33 в нее подают через гибкий рукав 40 наземного оборудования (не показан) и муфту 41 горячий растворитель на углеводородной основе (растворитель), который, вытекая из сопел 37 (фиг.7) наконечника 36, нагревает контактирующую породу пласта 9 (пропитанный сверхвязкой нефтью песок) и уменьшает ее вязкость, создавая эффект смазывания. При этом оболочка 39 под действием давления растворителя герметизирует перфорированные участки трубы 33. В дальнейшем растворитель через камеру 29 (фиг.6) кондуктора 21, задвижку 19, коллектор 31 и трубу 42 попадает в емкость 11. Длина вдавливания труб 33 в пласт 9 должна быть максимальной по техническим возможностям применяемого для этого оборудования и может составлять 700 метров и более, а их перфорированные участки с фильтрами 34 - начиная с расстояния более 25 метров от скважины. Диаметры труб 33 и оболочки 27 горизонтального кондуктора 21 определяют расчетом, и они могут быть порядка соответственно 60 и 100 мм. После достижения проектной длины горизонтальной скважины 21 оболочку 39 убирают или частично оставляют, герметизируют сопряжение с кондуктором 23 (фиг.4), центральный канал 38 соединяют через задвижки 19 с верхним 30 и нижним 31 коллекторами и закрывают равнопроходной задвижкой 43. При ее дальнейшей эксплуатации перемещением оболочки 39 можно регулировать подачу пара на разные участки пласта 9 или вести отбор продукции с его различных участков. Изготавливают оболочку из эластичного материала, например из силиконовой резины, которая может работать при температурах 300°С. Участок 44 после горизонтального кондуктора герметизируют известным способом, например цементируют. Это нужно для того, чтобы закачиваемый в трубы 33 пар не прорывался к вертикальной скважине 6. Труба 33 и горизонтальный кондуктор 23 могут быть как составными, так и сплошными (гибкими), а их материал - металл или неметалл, способный работать в условиях пласта. Сопряжения выходных концов труб 33 с кондуктором 23 и стенкой скважины герметизируют известными способами. Центральный канал 38 трубы 33 через задвижки 19 соединяют с верхним 30 и нижним 31 коллекторами, которые сообщают соответственно с паропроводом 20 и емкостью 11. Таким же образом строят остальные горизонтальные скважины.

Арматуры устьев горизонтальных скважин 21, коллекторы 30 и 31, задвижки 19 и 43, герметичную камеру 12 и другие трубопроводы теплоизолируют (не показаны). Монтаж оборудования в вертикальной скважине 6 производят с использованием рабочего лифта (не показан) и соблюдением правил техники безопасности. Рабочий персонал обеспечивают средствами индивидуальной защиты для работы в этих условиях.

Геофизические исследования, обслуживание и ремонт горизонтальных скважин 21 выполняют с применением известного поверхностного оборудования с гибким рукавом с необходимым набором приборов и инструментов, с одновременным сбором продукции через задвижки 19 и нижний коллектор 31 в подземной емкости 11.

Насос 45 для откачки нефти выбирают для каждого конкретного случая с учетом его вязкости, температуры, наличия механических примесей и т.д. Могут применяться штанговые глубинно-насосные установки, погружные электроцентробежные насосные установки, винтовые насосы и т.д. Монтаж, обслуживание и демонтаж этих насосов производят в дополнительной скважине 14 с поверхности применением известных технологических приемов и оборудования. Внутреннюю полость скважины 14 сообщают через трубопровод 46 с системой улавливания легких фракций (не показана). Для откачки с нижней части емкости воды могут применить дополнительные насосы. Устье дополнительной скважины 14 теплоизолируют и можно закрыть съемной камерой 47.

Для добычи нефти применяют технологию парогравитационного дренирования с закачкой в пласт перегретого пара с температурой порядка 250°С. Сущность технологии заключается в том, что пласт нагревают перегретым паром для снижения вязкости продукции и приведения ее в текучее состояние. Движения пара в пласт 9 и продукции в подземную емкость 11 в общем случае поясняется на примере работы одной горизонтальной скважины 21. Через паропровод 20, верхний коллектор 30, задвижки 19, камеру 29 и скважину 21 пар поступает в пласт 9 и прогревает его. При этом все другие задвижки закрыты. Сбор продукции в подземную емкость 11 осуществляют через скважину 21, камеру 29, задвижки 19 и коллектор 31. При этом все другие задвижки закрыты. Возможны другие варианты. Пар из коллектора 30, задвижку 19 и камеру 29 поступает в пласт 9, а продукция из скважины 21, задвижку 19 и коллектор 31 - в емкость 11. При этом все другие задвижки закрыты. Пар из коллектора 30, задвижку 19 и скважину 21 поступает в пласт 9, а продукция из камеры 29, задвижку 19 и коллектор 31 - в емкость 11. При этом все другие задвижки закрыты.

Совместную работу всех горизонтальных скважин осуществляют следующим образом. Подачу пара в горизонтальные скважины 21 при помощи верхних коллекторов 30 и задвижек 19 осуществляют через часть перфорированных труб 33 и/или камер 29 горизонтальных кондукторов 23, периодически меняя их сочетание при помощи задвижек 19 согласно технологическому режиму добычи, при этом другие перфорированные трубы 33 и/или камеры 29 горизонтальных кондукторов 23 изолируют или через нижние коллекторы 31 и задвижки 19 сообщают с емкостью 11. Продукция пласта 9 из горизонтальных скважин 21 поступает в емкость 11 через задвижки 19 и нижние коллекторы 31 из части перфорированных труб 33 и/или камер 29 горизонтальных кондукторов 23, периодически меняя их сочетание при помощи задвижек 19 согласно технологическому режиму добычи, при этом другие перфорированные трубы 33 и/или камеры 29 горизонтальных кондукторов 23 изолируют или через задвижки 19 и коллекторы 30 сообщают с паропроводом 20.

На первом этапе эксплуатации залежи пар закачивают расчетное время через паропровод 20, верхние коллекторы 30 при открытых верхних задвижках 19 во все горизонтальные скважины 21 для более полного прогрева пласта 9. В это время нижние задвижки 19, сообщающие их через нижние коллекторы 31 с емкостью 11, закрыты. После достаточного прогрева пласта 9 открывают нижние задвижки 19, сообщающие камеры 29 через коллектор 31 с емкостью 11, а подачу пара в трубы 33 продолжают. В гравитационном режиме и под действием пластового давления продукция в виде нефти с водой попадает через фильтры 28, камеры 29 и коллектор 31 в емкость 11. В емкости 11 нефть всплывает в воде вверх, механические примеси опадают вниз, а легкие фракции через полость дополнительной скважины 14 и трубопровод 47 поступают в систему их улавливания (не показана), т.е. происходит первичная стадия подготовки продукции. Для ускорения этого процесса можно использовать известные методы и химические реагенты. В зависимости от применяемого технологического режима эксплуатации пласта горизонтальные скважины в горизонтальном сечении и вертикальных рядах могут быть как паронагнетательными, так и эксплуатационными. Например, в верхний ряд всех скважин (или в часть их) закачивают пар, а с нижнего ряда всех скважин (или из части) ведут добычу продукции. В зависимости от принятой технологии эксплуатации пласта могут быть любые варианты совместной эксплуатации горизонтальных скважин. Для интенсификации добычи возможно применение химических реагентов и растворителей. Из емкости 11 продукция поступает в дополнительную скважину 14, и ее откачивают на поверхность насосами 45. В перфорированной части 16 дополнительной скважины 14 можно установить противопесочный фильтр.

Для очистки емкости 11 через паропровод 20, коллектор 30, задвижку 19, трубу 18 в коллектор 17 подают пар, который, выходя из перфорированных отверстий 48 (фиг.8), смешивает механические примеси с водой, образуя пульпу, которую откачивают на поверхность насосом.

Оборудование выполняют во взрывозащищенном быстросборном модульном исполнении, снабжают приборами безопасности, контроля и видеонаблюдения.

Управление технологическими процессами осуществляет оператор с дневной поверхности. После полной выработки залежи съемное оборудование скважины демонтируют, зону пласта герметизируют, при необходимости ее промывают и используют для других целей или засыпают. Во всех случаях обеспечивают экологические требования.

Технико-экономическое преимущество предлагаемого способа добычи сверхвязкой нефти заключается в следующем. Изготовление конструктивных блоков и элементов вертикальной и горизонтальных скважин по проекту на поверхности и их предварительная сборка разборка уменьшают срок, себестоимость дальнейшего строительства и повышает его качество. Значительно уменьшаются площади отводимых для этих целей сельскохозяйственных земель. Несложная схема строительства вертикальной скважины с применением кондуктора для направления цилиндрических колец при их наращивании сверху вниз, жесткое соединение и герметизация их торцевых стыков на поверхности, использование собственного веса на кольцевой нож и известных приемов уменьшения трения колец о породу, а также использование для выемки породы грейфера или других эффективных технологий упрощают строительство. Строительство горизонтальных скважин методом вдавливания через направляющие кондукторов без выемки породы, подача при этом горячего растворителя на углеводородной основе для уменьшения сопротивлений, возможность регулирования эластичной оболочкой подачу пара на ее различные участки или отбора продукции с ее различных участков, а также рациональное использование скважин по гибким эффективным технологиям добычи без переналадки оборудования и значительное увеличения дебита также снижают себестоимость строительства и повышают эффективность добычи. Монтаж и обслуживание насосов с поверхности с применением известных приемов и оборудования, как на обычных скважинах, их эксплуатация в более благоприятных условиях, чем, например, в горизонтальных скважинах, снижают эксплуатационные расходы. Появляется возможность эффективно прогревать пласт с наименьшими потерями тепла закачиваемого пара, собирать продукцию в подземную емкость с большой площади, где происходит ее первичная подготовка, отводить легкие фракции в систему их сбора. Снижается общее количество применяемой насосной техники, и появляется возможность применения высокопроизводительных эффективных насосов. Способ позволяет вскрывать продуктивный пласт с минимальным на него воздействием, применять в зависимости от стадии разработки месторождения различные технологические приемы воздействия на пласт без переналадки оборудования и вести рациональный отбор продукции с различных участков пласта. То что горизонтальные, дополнительная скважины и кольцевые камеры горизонтальных кондукторов снабжены противопесочными фильтрами, исключающими вынос механических примесей, подземная емкость сообщена с системой улавливания легких фракций, а первичная подготовка продукции происходит под землей с использованием для ускорения этого процесса известных эффективных методов и исключены условия для образования стойких эмульсий при ее откачке, уменьшает затраты на общую ее подготовку на поверхности, которая в некоторых случаях может достигать до 60% от общих затрат на добычу. Геофизические исследования, обслуживание и ремонт горизонтальных скважин выполняют с применением известного поверхностного оборудования с гибким рукавом. Управление технологическим процессом добычи нефти осуществляют с поверхности дистанционно по заданной программе и в автоматическом режиме. Решаются вопросы безопасности и экологии.

Приводим некоторые оценочные параметры добычи сверхвязкой нефти предлагаемым способом. Исходные данные: длина горизонтальных скважин - 700+700 м, мощность пласта - 20 м, нефтенасыщенность - 10% (может быть значительно больше), извлечение - 90%, скважина работает 365 дней в году, средний дебит по нефти, при применении парогравитационного режима воздействия на пласт, существующих двухустьевых скважин на Ашальчинском месторождении сверхвязкой нефти - (15-20) т/сут (горизонтальная скважина проложена около 300 м по пласту), плотность нефти - 0,9 т/м3 (может быть больше), количество горизонтальных скважин - 2 ряда × 16 скв. = 32 скв. (в зависимости от принятой технологии добычи количество скважин может быть значительно больше, а часть скважин может быть нагнетательными), стоимость нефти на рынке - 4000 руб./т (ориентировочно, для оценки).

Количество нефти, которое можно извлечь из пласта охватываемой скважиной:

Q=3,14×700×700×20×0,1×0,9×0,9=2492532 т (не учтено поступление нефти из приграничных зон по периметру).

Количество общей выручки от продажи нефти:

Добщ.=2492532×4000=9970128000 руб.

Суточный дебит вертикальной скважины по битуму складывается из суточных дебитов горизонтальных скважин. Считаем, что при увеличении их горизонтальных участков в пласте более чем в два раза увеличится и дебит. Есть сведения, что в Канаде и Венесуэле из горизонтальных скважин длиной 500-700 м добывают высоковязкой продукции порядка 150 т/сут. Принимаем суточный дебит добывающей горизонтальной скважины 75 т/сут. Тогда:

Ссут.=75×16=1200 т/сут (считаем, что половина скважин нагнетательные).

Годовая добыча:

Сгод.=1200×365=438000 т.

Годовая выручка от продажи нефти:

Дгод.=438000×4000=1752000000 руб.

Количество лет работы скважины:

Нлет.=2492532:438000=5,7 лет.

Три скважины, занимающие небольшие земельные участки на поверхности, обеспечат добычу более 1,3 млн тонн сверхвязкой нефти в год.

После выработки запасов залежи нефти скважину можно использовать в качестве подземного резервуара для других целей (для хранения нефти, воды, промышленных отходов, удобрений и т.п.).

Таким образом, применение предлагаемого технического решения повышает эффективность добычи сверхвязкой нефти.

1. Способ добычи сверхвязкой нефти, включающий строительство вертикальной скважины, вскрытие пласта из вертикальной скважины по ее периметру горизонтальными скважинами, подвод теплоносителя в пласт, сбор продукции в подземную емкость и откачку ее на поверхность, отличающийся тем, что строят вертикальную скважину до проектной глубины из блочных цилиндрических колец, с предварительно изготовленными на них технологическими отверстиями и закладными элементами, с контрольным монтажом и демонтажем необходимых устройств, соединяя их между собой жестко и герметично на поверхности и наращивая сверху вниз через направляющий кондуктор под весом, с одновременной выемкой породы с торцевой внутренней площади, причем нижний торец первого цилиндрического кольца снабжают кольцевым ножом, а технологические отверстия снятых выступающих устройств временно герметизируют, закольцевые пространства выше кровли и ниже подошвы пласта герметизируют, вскрывают пласт из вертикальной скважины, согласно проекта, горизонтальными скважинами в виде перфорированных труб, снабженных фильтрами, центраторами и торцевыми наконечниками с соплами методом их вдавливания через центральные направляющие каналы горизонтальных кондукторов, герметично соединенных со стенками вертикальной скважины и снабженных фильтрами и камерами, соединенными через дистанционно управляемые задвижки, верхние и нижние коллекторы соответственно с паропроводом и подземной емкостью, которые также соединены через дистанционно управляемые задвижки, верхние и нижние коллекторы соответственно с паропроводом и подземной емкостью, а их центральные каналы закрывают равнопроходными задвижками, подвод теплоносителя в пласт осуществляют через верхний коллектор, дистанционно управляемые задвижки, перфорированные трубы и камеры горизонтальных кондукторов при закрытых остальных задвижках, сбор продукции в подземную емкость осуществляют через перфорированные трубы и камеры горизонтальных кондукторов, дистанционно управляемые задвижки и нижний коллектор при закрытых остальных задвижках, а для откачки продукции применяют любые известные насосы, способные эффективно работать в этих условиях.

2. Способ по п.1, отличающийся тем, что расстояния между рядами горизонтальных скважин по вертикали и их количество определяют в зависимости от мощности пласта и принятой технологии добычи, каждую скважину ряда соединяют через дистанционно управляемую задвижку и верхний коллектор с паропроводом, а через дистанционно управляемую задвижку и нижний коллектор - с подземной емкостью, которые могут быть, как нагнетательными, так и добывающими.

3. Способ по п.1, отличающийся тем, что перед вдавливанием перфорированной трубы в пласт в ее центральный канал помещают герметизирующую эластичную съемную оболочку, в процессе вдавливания внутрь него подают горячий растворитель на углеводородной основе, а после вдавливания затрубный торцевой участок горизонтального кондуктора герметизируют.

4. Способ по п.1, отличающийся тем, что подачу теплоносителя в горизонтальные скважины при помощи верхних коллекторов и дистанционно управляемых задвижек осуществляют через часть перфорированных труб и/или камер горизонтальных кондукторов, периодически меняя их сочетание при помощи дистанционно управляемых задвижек согласно технологического режима добычи, при этом другие перфорированные трубы и/или камеры горизонтальных кондукторов изолированы или через дистанционно управляемые задвижки и нижние коллекторы сообщены с подземной емкостью.

5. Способ по п.1, отличающийся тем, что продукция пласта из горизонтальных скважин поступает в подземную емкость через дистанционно управляемые задвижки и нижние коллекторы из части перфорированных труб и/или камер горизонтальных кондукторов, периодически меняя их сочетание при помощи дистанционно управляемых задвижек согласно технологического режима добычи, при этом другие перфорированные трубы и/или камеры горизонтальных кондукторов изолированы или через дистанционно управляемые задвижки и коллекторы сообщены с паропроводом.

6. Способ по п.1, отличающийся тем, что при эксплуатации горизонтальных скважин геофизические исследования, обслуживание и ремонт выполняют с применением поверхностного оборудования с гибким рукавом с необходимым набором приборов и инструментов через герметизируемые центральные каналы, с одновременным сбором продукции через задвижки и нижний коллектор в подземной емкости.

7. Способ по п.1, отличающийся тем, что насосы для откачки продукции размещают в дополнительной герметичной вертикальной скважине, снабженной в перфорированной зоне подземной емкости фильтром и соединенной с системой улавливания легких фракций.

www.findpatent.ru

Способ добычи сверхвязкой нефти | Банк патентов

Изобретение относится к области нефтяной промышленности, а более конкретно, к способам добычи углеводородов скважинными методами со вскрытием пласта горизонтальными каналами с тепловым воздействием на него и может быть использовано для добычи сверхвязкой нефти и природных битумов.

Известен способ разработки залежей высоковязких нефтей и битумов (патент РФ № 2246001, Е21В 43/24, опубл. Бюл. № 4 от 10.02.2005 г.), включающий строительство двухустьевой скважины, горизонтальная перфорированная часть которой проходит по пласту, а устьевые участки соединяют наземным участком в виде дугообразного трубопровода с образованием замкнутого канала, внутри которого помещают дополнительную колонну труб, внутри которой размещают замкнутый тяговый элемент с поршнями, приводимый в движение наземным приводом. В основу способа положена задача повышения эффективности системы за счет реализации процесса непрерывного глубинного насосного вытеснения нефти в равнопроходном замкнутом гидравлическом канале.

Залежи высоковязких нефтей и битумов, залегая на небольших глубинах, характеризуются низкими пластовыми давлениями, высокой вязкостью и малой подвижностью продукции в пласте. Для осуществления предлагаемого способа необходимо построить сложное, дорогое и разовое техническое сооружение, заключающееся в строительстве скважины по заданной замкнутой траектории и громоздкой наземной части для привода и системы приема продукции. Без применения дополнительных технологических приемов продукция не будет поступать из пласта в перфорированную часть скважины в достаточном количестве. В этих условиях эффективность способа не может быть высокой.

Наиболее близким является способ добычи нефти подземными горизонтальными скважинами (патент РФ № 2060377, Е21В 43/24, 7/04, 21/00, опубл. Бюл. № 14 от 20.05.1996 г.) с применением теплового воздействия на продуктивный пласт, включающий строительство вертикального шахтного ствола, сверху закрытого герметичной крышкой, вскрывающего продуктивный пласт на всю его мощность, сооружение подземной рабочей камеры, изолированной от рудничной атмосферы, бурение с дневной поверхности горизонтальных нагнетательных и добывающих скважин в два яруса, устья которых находятся в подземной рабочей камере, закачку в продуктивный пласт через нагнетательные скважины теплоносителя, подаваемого с дневной поверхности по паропроводу, извлечение из продуктивного пласта добывающими скважинами в подземную рабочую камеру нефти, сбор ее в емкость в виде подъемных скважин и откачку на дневную поверхность эрлифтными подъемниками.

Недостатком способа является то, что строить технически сложные, дорогие и разовые сооружения на месторождениях сверхвязких нефтей и природных битумов, расположенных под обрабатываемыми землями и населенными пунктами на глубинах 40-250 метров, имеющих небольшие мощности пластов, пластовые давления и запасы, не всегда экономически целесообразно. Строительно-монтажные работы с применением сложных металлоконструкций для рабочей подземной камеры диаметром 20-30 метров, большого количества железобетона, обсадных труб, насосно-компрессорных труб повысит себестоимость строительства. Кроме этого при откачке продукции эрлифтными подъемниками не исключаются условия для образования стойких эмульсий, что потребует дополнительных затрат на ее дальнейшую подготовку. Разбуривание пласта горизонтальными скважинами с поверхности с применением обсадных труб и подъемом выбуренной породы на поверхность за счет циркуляции промывочной жидкости повлечет загрязнение зоны пласта и усложнит освоение этих скважин впоследствии. Невозможно применять гибкие технологии воздействия на пласт без переналадки подземного оборудования. После полной выработки запасов залежи проблематично утилизировать скважину с соблюдением экологических требований. Все это снижает эффективность применения известного технического предложения.

Технической задачей предложения является повышение эффективности добычи сверхвязкой нефти за счет уменьшения отводимых для этих целей сельскохозяйственных земель, сроков строительства скважины и себестоимости, возможности применения эффективных технологий воздействия на пласт через горизонтальные скважины без переналадки оборудования, увеличения дебита, уменьшения общего количества насосов, исследования, обслуживания и ремонта горизонтальных скважин и насосов с применением поверхностного оборудования, предварительной подготовки продукции в подземной емкости с использованием эффективных методов и применения для ее откачки высокопроизводительных современных насосов.

Поставленная задача решается способом добычи сверхвязкой нефти, включающим строительство вертикальной скважины, вскрытие пласта из вертикальной скважины горизонтальными скважинами, подвод теплоносителя в пласт, сбор продукции в подземную емкость и откачку ее на поверхность.

Новым является то, что строят вертикальную скважину до проектной глубины из блочных цилиндрических колец с предварительно изготовленными на них технологическими отверстиями и закладными элементами с контрольным монтажом и демонтажом необходимых устройств, соединяя их между собой жестко и герметично на поверхности и наращивая сверху вниз через направляющий кондуктор под весом, с одновременной выемкой породы с торцевой внутренней площади, причем нижний торец первого цилиндрического кольца снабжают кольцевым ножом, а технологические отверстия снятых выступающих устройств временно герметизируют, закольцевые пространства выше кровли и ниже подошвы пласта герметизируют, вскрывают пласт из вертикальной скважины согласно проекту горизонтальными скважинами в виде перфорированных труб, снабженных фильтрами, центраторами и торцевыми наконечниками с соплами, методом их вдавливания через центральные направляющие каналы горизонтальных кондукторов, герметично соединенных со стенками вертикальной скважины и снабженных фильтрами и камерами, соединенными через дистанционно управляемые задвижки, верхние и нижние коллекторы соответственно с паропроводом и подземной емкостью, которые также соединены через дистанционно управляемые задвижки, верхние и нижние коллекторы соответственно с паропроводом и подземной емкостью, а их центральные каналы закрывают равнопроходными задвижками, подвод теплоносителя в пласт осуществляют через верхний коллектор, дистанционно управляемые задвижки, перфорированные трубы и камеры горизонтальных кондукторов при закрытых остальных задвижках, сбор продукции в подземную емкость осуществляют через перфорированные трубы и камеры горизонтальных кондукторов, дистанционно управляемые задвижки и нижний коллектор при закрытых остальных задвижках, а для откачки продукции применяют любые известные насосы, способные эффективно работать в этих условиях.

Новым является то, что расстояния между рядами горизонтальных скважин по вертикали и их количество определяют в зависимости от мощности пласта и принятой технологии добычи, каждую скважину ряда соединяют через дистанционно управляемую задвижку и верхний коллектор с паропроводом, а через дистанционно управляемую задвижку и нижний коллектор - с подземной емкостью, которые могут быть как нагнетательными, так и добывающими.

Новым является то, что перед вдавливанием перфорированной трубы в пласт в ее центральный канал помещают герметизирующую эластичную съемную оболочку, в процессе вдавливания внутрь него подают горячий растворитель на углеводородной основе, а после вдавливания затрубный торцевой участок горизонтального кондуктора герметизируют.

Новым является то, что подачу теплоносителя в горизонтальные скважины при помощи верхних коллекторов и дистанционно управляемых задвижек осуществляют через часть перфорированных труб и/или камер горизонтальных кондукторов, периодически меняя их сочетание при помощи дистанционно управляемых задвижек согласно технологическому режиму эксплуатации, при этом другие перфорированные трубы и/или камеры горизонтальных кондукторов изолированы или через дистанционно управляемые задвижки и нижние коллекторы сообщены с подземной емкостью.

Новым является то, что продукция пласта из горизонтальных скважин поступает в подземную емкость через дистанционно управляемые задвижки и нижние коллекторы из части перфорированных труб и/или камер горизонтальных кондукторов, периодически меняя их сочетание при помощи дистанционно управляемых задвижек согласно технологическому режиму эксплуатации, при этом другие перфорированные трубы и/или камеры горизонтальных кондукторов изолированы или через дистанционно управляемые задвижки и коллекторы сообщены с паропроводом.

Новым является то, что при эксплуатации горизонтальных скважин геофизические исследования, обслуживание и ремонт выполняют с применением поверхностного оборудования с гибким рукавом с необходимым набором приборов и инструментов через герметизируемые центральные каналы, с одновременным сбором продукции через дистанционно управляемые задвижки и нижний коллектор в подземной емкости.

Новым является то, что насосы для откачки продукции размещают в дополнительной герметичной вертикальной скважине, снабженной в перфорированной зоне подземной емкости фильтром и соединенной с системой улавливания легких фракций.

На фиг.1 приведена схема строительства вертикальной скважины.

На фиг.2 - фрагмент цилиндрического железобетонного кольца с кольцевым ножом по выноске А фиг.1.

На фиг.3 - фрагмент соединения цилиндрических железобетонных колец с закладными элементами по выноске Б фиг.1.

На фиг.4 приведена общая схема размещения оборудования в скважине (элементы других горизонтальных скважин на заднем плане между коллекторами условно не показаны).

На фиг.5 - разрез В-В по фиг.4.

На фиг.6 - схема строительства горизонтальной скважины.

На фиг.7 - фрагмент перфорированной трубы горизонтально скважины с фильтром, эластичной съемной оболочкой и наконечником по выноске Г фиг.6.

На фиг.8 - фрагмент коллектора системы очистки емкости по выноске Д фиг.4.

Способ добычи сверхвязкой нефти (далее нефти) осуществляют следующим образом. По проекту изготавливают все оборудование для строительства скважины и производят предварительную сборку и разборку основных элементов конструкции на поверхности. Для обсаживания вертикальной скважины применяют цилиндрические железобетонные кольца (кольца), способные работать в этих условиях. Технологические отверстия (не показаны) на кольцах снятых выступающих устройств временно герметизируют. Для вертикальной скважины строят направляющий кондуктор 1 (фиг.1) с проходным диаметром для колец 2 и высотой более диаметра вертикальной скважины. Диаметр колец определяют проектом, и он может быть 2-6 метров. Грузоподъемным устройством (не показано) вводят первое кольцо 2 с кольцевым ножом 3 (фиг.2) в направляющий кондуктор 1 (фиг.1), причем высота кольца 2 больше высоты кондуктора 1. Далее вынимают породу с внутренней торцевой площади кольца 2, например, грейфером (не показан), которое под собственным весом начинает опускаться вниз. Затем устанавливают следующее кольцо 2, предварительно поместив герметизирующий состав 4 (фиг.3) в стык их сопряжения и жестко соединяют между собой, например, сваркой закладных элементов 5 по периметру. В качестве герметизирующего состава можно применять цементный раствор. Таким же образом наращивают последующие кольца 2 сверху вниз через кондуктор 1 до проектной глубины вертикальной скважины 6 (фиг.1). Для уменьшения трения колец 2 о породу применяют известные методы и вещества, например тиксотронный раствор на основе специальных глин. Затем цементируют закольцевые пространства выше кровли 7 (фиг.4) и ниже подошвы 8 пласта 9. Закрывают нижнюю часть вертикальной скважины на уровне подошвы 8 пласта 9 горизонтальной герметичной теплоизолированной крышкой 10 (крышка), образуя емкость 11 для сбора продукции. В крышке 9 предусматривают герметично закрываемый вход для монтажа и обвязки элементов оборудования в емкости 11 (не показан). Сверху вертикальную скважину закрывают герметичной камерой 12 с полом 13, в которой впоследствии размещают рабочий лифт, систему вентиляции и другое необходимое оборудование (не показаны). Строят дополнительную герметичную скважину 14 с углублением 15 от забоя вертикальной скважины и перфорированным участком 16 в зоне подземной емкости 11. В емкости 11 монтируют перфорированный коллектор 17 с трубопроводом 18, которую через дистанционно управляемую задвижку 19 (задвижка) сообщают с паропроводом 20.

Количество необходимых горизонтальных скважин 21 определяют проектом с учетом мощности пласта и принятой технологией добычи. Их количество может быть более 16 в одном сечении и несколько рядов по высоте. Строительство горизонтальных скважин 21 поясним на примере строительства одной из них. Открывают (снимают заглушку) технологическое отверстие (не показан) на стенке кольца 2 и горизонтально разбуривают пласт 9 на глубину до 20 метров известными средствами, например шнеком. В образовавшуюся полость 22 помещают горизонтальный кондуктор 23, включающий центральный направляющий канал 24 в виде трубы, по торцам 25 и 26 соединенной с наружной оболочкой 27 в виде перфорированной трубы большего диаметра с противопесочным фильтром 28 (фильтр), образуя кольцевую камеру 29 (камера), причем на торце 25 выполняют отверстия (не показаны). Оболочку 27 герметично соединяют со стенкой вертикальной скважины 6. Далее камеру 29 через задвижки 19 соединяют с верхним 30 и нижним 31 коллекторами, которые сообщены соответственно с паропроводом 20 и емкостью 11. В направляющий канал 24 горизонтального кондуктора 21 вводят через толкающее устройство 32 перфорированную трубу 33 (фиг.6), снабженную фильтрами 34, центраторами 35 и торцевым наконечником 36 с соплами 37, поместив в ее центральный канал 38 герметизирующую эластичную съемную оболочку 39 (оболочка), которая закрывает ее перфорированные участки в процессе вдавливания в пласт 9. Для уменьшения сопротивлений при вдавливании перфорированной трубы 33 в нее подают через гибкий рукав 40 наземного оборудования (не показан) и муфту 41 горячий растворитель на углеводородной основе (растворитель), который, вытекая из сопел 37 (фиг.7) наконечника 36, нагревает контактирующую породу пласта 9 (пропитанный сверхвязкой нефтью песок) и уменьшает ее вязкость, создавая эффект смазывания. При этом оболочка 39 под действием давления растворителя герметизирует перфорированные участки трубы 33. В дальнейшем растворитель через камеру 29 (фиг.6) кондуктора 21, задвижку 19, коллектор 31 и трубу 42 попадает в емкость 11. Длина вдавливания труб 33 в пласт 9 должна быть максимальной по техническим возможностям применяемого для этого оборудования и может составлять 700 метров и более, а их перфорированные участки с фильтрами 34 - начиная с расстояния более 25 метров от скважины. Диаметры труб 33 и оболочки 27 горизонтального кондуктора 21 определяют расчетом, и они могут быть порядка соответственно 60 и 100 мм. После достижения проектной длины горизонтальной скважины 21 оболочку 39 убирают или частично оставляют, герметизируют сопряжение с кондуктором 23 (фиг.4), центральный канал 38 соединяют через задвижки 19 с верхним 30 и нижним 31 коллекторами и закрывают равнопроходной задвижкой 43. При ее дальнейшей эксплуатации перемещением оболочки 39 можно регулировать подачу пара на разные участки пласта 9 или вести отбор продукции с его различных участков. Изготавливают оболочку из эластичного материала, например из силиконовой резины, которая может работать при температурах 300°С. Участок 44 после горизонтального кондуктора герметизируют известным способом, например цементируют. Это нужно для того, чтобы закачиваемый в трубы 33 пар не прорывался к вертикальной скважине 6. Труба 33 и горизонтальный кондуктор 23 могут быть как составными, так и сплошными (гибкими), а их материал - металл или неметалл, способный работать в условиях пласта. Сопряжения выходных концов труб 33 с кондуктором 23 и стенкой скважины герметизируют известными способами. Центральный канал 38 трубы 33 через задвижки 19 соединяют с верхним 30 и нижним 31 коллекторами, которые сообщают соответственно с паропроводом 20 и емкостью 11. Таким же образом строят остальные горизонтальные скважины.

Арматуры устьев горизонтальных скважин 21, коллекторы 30 и 31, задвижки 19 и 43, герметичную камеру 12 и другие трубопроводы теплоизолируют (не показаны). Монтаж оборудования в вертикальной скважине 6 производят с использованием рабочего лифта (не показан) и соблюдением правил техники безопасности. Рабочий персонал обеспечивают средствами индивидуальной защиты для работы в этих условиях.

Геофизические исследования, обслуживание и ремонт горизонтальных скважин 21 выполняют с применением известного поверхностного оборудования с гибким рукавом с необходимым набором приборов и инструментов, с одновременным сбором продукции через задвижки 19 и нижний коллектор 31 в подземной емкости 11.

Насос 45 для откачки нефти выбирают для каждого конкретного случая с учетом его вязкости, температуры, наличия механических примесей и т.д. Могут применяться штанговые глубинно-насосные установки, погружные электроцентробежные насосные установки, винтовые насосы и т.д. Монтаж, обслуживание и демонтаж этих насосов производят в дополнительной скважине 14 с поверхности применением известных технологических приемов и оборудования. Внутреннюю полость скважины 14 сообщают через трубопровод 46 с системой улавливания легких фракций (не показана). Для откачки с нижней части емкости воды могут применить дополнительные насосы. Устье дополнительной скважины 14 теплоизолируют и можно закрыть съемной камерой 47.

Для добычи нефти применяют технологию парогравитационного дренирования с закачкой в пласт перегретого пара с температурой порядка 250°С. Сущность технологии заключается в том, что пласт нагревают перегретым паром для снижения вязкости продукции и приведения ее в текучее состояние. Движения пара в пласт 9 и продукции в подземную емкость 11 в общем случае поясняется на примере работы одной горизонтальной скважины 21. Через паропровод 20, верхний коллектор 30, задвижки 19, камеру 29 и скважину 21 пар поступает в пласт 9 и прогревает его. При этом все другие задвижки закрыты. Сбор продукции в подземную емкость 11 осуществляют через скважину 21, камеру 29, задвижки 19 и коллектор 31. При этом все другие задвижки закрыты. Возможны другие варианты. Пар из коллектора 30, задвижку 19 и камеру 29 поступает в пласт 9, а продукция из скважины 21, задвижку 19 и коллектор 31 - в емкость 11. При этом все другие задвижки закрыты. Пар из коллектора 30, задвижку 19 и скважину 21 поступает в пласт 9, а продукция из камеры 29, задвижку 19 и коллектор 31 - в емкость 11. При этом все другие задвижки закрыты.

Совместную работу всех горизонтальных скважин осуществляют следующим образом. Подачу пара в горизонтальные скважины 21 при помощи верхних коллекторов 30 и задвижек 19 осуществляют через часть перфорированных труб 33 и/или камер 29 горизонтальных кондукторов 23, периодически меняя их сочетание при помощи задвижек 19 согласно технологическому режиму добычи, при этом другие перфорированные трубы 33 и/или камеры 29 горизонтальных кондукторов 23 изолируют или через нижние коллекторы 31 и задвижки 19 сообщают с емкостью 11. Продукция пласта 9 из горизонтальных скважин 21 поступает в емкость 11 через задвижки 19 и нижние коллекторы 31 из части перфорированных труб 33 и/или камер 29 горизонтальных кондукторов 23, периодически меняя их сочетание при помощи задвижек 19 согласно технологическому режиму добычи, при этом другие перфорированные трубы 33 и/или камеры 29 горизонтальных кондукторов 23 изолируют или через задвижки 19 и коллекторы 30 сообщают с паропроводом 20.

На первом этапе эксплуатации залежи пар закачивают расчетное время через паропровод 20, верхние коллекторы 30 при открытых верхних задвижках 19 во все горизонтальные скважины 21 для более полного прогрева пласта 9. В это время нижние задвижки 19, сообщающие их через нижние коллекторы 31 с емкостью 11, закрыты. После достаточного прогрева пласта 9 открывают нижние задвижки 19, сообщающие камеры 29 через коллектор 31 с емкостью 11, а подачу пара в трубы 33 продолжают. В гравитационном режиме и под действием пластового давления продукция в виде нефти с водой попадает через фильтры 28, камеры 29 и коллектор 31 в емкость 11. В емкости 11 нефть всплывает в воде вверх, механические примеси опадают вниз, а легкие фракции через полость дополнительной скважины 14 и трубопровод 47 поступают в систему их улавливания (не показана), т.е. происходит первичная стадия подготовки продукции. Для ускорения этого процесса можно использовать известные методы и химические реагенты. В зависимости от применяемого технологического режима эксплуатации пласта горизонтальные скважины в горизонтальном сечении и вертикальных рядах могут быть как паронагнетательными, так и эксплуатационными. Например, в верхний ряд всех скважин (или в часть их) закачивают пар, а с нижнего ряда всех скважин (или из части) ведут добычу продукции. В зависимости от принятой технологии эксплуатации пласта могут быть любые варианты совместной эксплуатации горизонтальных скважин. Для интенсификации добычи возможно применение химических реагентов и растворителей. Из емкости 11 продукция поступает в дополнительную скважину 14, и ее откачивают на поверхность насосами 45. В перфорированной части 16 дополнительной скважины 14 можно установить противопесочный фильтр.

Для очистки емкости 11 через паропровод 20, коллектор 30, задвижку 19, трубу 18 в коллектор 17 подают пар, который, выходя из перфорированных отверстий 48 (фиг.8), смешивает механические примеси с водой, образуя пульпу, которую откачивают на поверхность насосом.

Оборудование выполняют во взрывозащищенном быстросборном модульном исполнении, снабжают приборами безопасности, контроля и видеонаблюдения.

Управление технологическими процессами осуществляет оператор с дневной поверхности. После полной выработки залежи съемное оборудование скважины демонтируют, зону пласта герметизируют, при необходимости ее промывают и используют для других целей или засыпают. Во всех случаях обеспечивают экологические требования.

Технико-экономическое преимущество предлагаемого способа добычи сверхвязкой нефти заключается в следующем. Изготовление конструктивных блоков и элементов вертикальной и горизонтальных скважин по проекту на поверхности и их предварительная сборка разборка уменьшают срок, себестоимость дальнейшего строительства и повышает его качество. Значительно уменьшаются площади отводимых для этих целей сельскохозяйственных земель. Несложная схема строительства вертикальной скважины с применением кондуктора для направления цилиндрических колец при их наращивании сверху вниз, жесткое соединение и герметизация их торцевых стыков на поверхности, использование собственного веса на кольцевой нож и известных приемов уменьшения трения колец о породу, а также использование для выемки породы грейфера или других эффективных технологий упрощают строительство. Строительство горизонтальных скважин методом вдавливания через направляющие кондукторов без выемки породы, подача при этом горячего растворителя на углеводородной основе для уменьшения сопротивлений, возможность регулирования эластичной оболочкой подачу пара на ее различные участки или отбора продукции с ее различных участков, а также рациональное использование скважин по гибким эффективным технологиям добычи без переналадки оборудования и значительное увеличения дебита также снижают себестоимость строительства и повышают эффективность добычи. Монтаж и обслуживание насосов с поверхности с применением известных приемов и оборудования, как на обычных скважинах, их эксплуатация в более благоприятных условиях, чем, например, в горизонтальных скважинах, снижают эксплуатационные расходы. Появляется возможность эффективно прогревать пласт с наименьшими потерями тепла закачиваемого пара, собирать продукцию в подземную емкость с большой площади, где происходит ее первичная подготовка, отводить легкие фракции в систему их сбора. Снижается общее количество применяемой насосной техники, и появляется возможность применения высокопроизводительных эффективных насосов. Способ позволяет вскрывать продуктивный пласт с минимальным на него воздействием, применять в зависимости от стадии разработки месторождения различные технологические приемы воздействия на пласт без переналадки оборудования и вести рациональный отбор продукции с различных участков пласта. То что горизонтальные, дополнительная скважины и кольцевые камеры горизонтальных кондукторов снабжены противопесочными фильтрами, исключающими вынос механических примесей, подземная емкость сообщена с системой улавливания легких фракций, а первичная подготовка продукции происходит под землей с использованием для ускорения этого процесса известных эффективных методов и исключены условия для образования стойких эмульсий при ее откачке, уменьшает затраты на общую ее подготовку на поверхности, которая в некоторых случаях может достигать до 60% от общих затрат на добычу. Геофизические исследования, обслуживание и ремонт горизонтальных скважин выполняют с применением известного поверхностного оборудования с гибким рукавом. Управление технологическим процессом добычи нефти осуществляют с поверхности дистанционно по заданной программе и в автоматическом режиме. Решаются вопросы безопасности и экологии.

Приводим некоторые оценочные параметры добычи сверхвязкой нефти предлагаемым способом. Исходные данные: длина горизонтальных скважин - 700+700 м, мощность пласта - 20 м, нефтенасыщенность - 10% (может быть значительно больше), извлечение - 90%, скважина работает 365 дней в году, средний дебит по нефти, при применении парогравитационного режима воздействия на пласт, существующих двухустьевых скважин на Ашальчинском месторождении сверхвязкой нефти - (15-20) т/сут (горизонтальная скважина проложена около 300 м по пласту), плотность нефти - 0,9 т/м3 (может быть больше), количество горизонтальных скважин - 2 ряда × 16 скв. = 32 скв. (в зависимости от принятой технологии добычи количество скважин может быть значительно больше, а часть скважин может быть нагнетательными), стоимость нефти на рынке - 4000 руб./т (ориентировочно, для оценки).

Количество нефти, которое можно извлечь из пласта охватываемой скважиной:

Q=3,14×700×700×20×0,1×0,9×0,9=2492532 т (не учтено поступление нефти из приграничных зон по периметру).

Количество общей выручки от продажи нефти:

Добщ.=2492532×4000=9970128000 руб.

Суточный дебит вертикальной скважины по битуму складывается из суточных дебитов горизонтальных скважин. Считаем, что при увеличении их горизонтальных участков в пласте более чем в два раза увеличится и дебит. Есть сведения, что в Канаде и Венесуэле из горизонтальных скважин длиной 500-700 м добывают высоковязкой продукции порядка 150 т/сут. Принимаем суточный дебит добывающей горизонтальной скважины 75 т/сут. Тогда:

Ссут.=75×16=1200 т/сут (считаем, что половина скважин нагнетательные).

Годовая добыча:

Сгод.=1200×365=438000 т.

Годовая выручка от продажи нефти:

Дгод.=438000×4000=1752000000 руб.

Количество лет работы скважины:

Нлет.=2492532:438000=5,7 лет.

Три скважины, занимающие небольшие земельные участки на поверхности, обеспечат добычу более 1,3 млн тонн сверхвязкой нефти в год.

После выработки запасов залежи нефти скважину можно использовать в качестве подземного резервуара для других целей (для хранения нефти, воды, промышленных отходов, удобрений и т.п.).

Таким образом, применение предлагаемого технического решения повышает эффективность добычи сверхвязкой нефти.

bankpatentov.ru


Смотрите также