Справочник химика 21. Технология прямой перегонки нефти


Интенсификация процесса прямой перегонки нефти

из "Технология переработки нефти Часть1 Первичная переработка нефти"

Интенсификация прямой перегонки нефти направлена прежде всего на повышение отбора дистиллятных фракций (суммы светлых в блоке АТ и вакуумных дистиллятов — на ВТ), а также на обеспечение четкости ректификации, т. е. уменьшение наложения температур конца кипения предыдушей и начала кипения последуюшей фракции. [c.362] Для реализации этих задач в последние годы в ректификационных колоннах все шире используются новые, более эффективные контактные устройства — регулярные насадки, а также нерегулярные разделительные устройства — каскадные мини-кольца. Эти устройства позволяют повысить эффективность разделения сложных углеводородных смесей, пропускную способность действующих тарельчатых колонн, уменьшить перепад давления на одну теоретическую ступень разделения, улучшить качество отбираемых погонов. На обычных тарелках пары пробулькивают через слой жидкости. Насадка же позволяет интенсифицировать тепло- и массообмен за счет непрерывного поверхностного взаимодействия пленки стекающей жидкости и поднимающихся паров, уменьшить унос капель жидкости парами. [c.362] Область применения насадок — от вакуумных колонн до колонн, работающих при избыточном давлении 1,2 МПа при разделении газообразных углеводородных смесей. [c.362] Примеры повышения эффективности разделения нефти в атмосферной колонне путем использования насадки приведены на рис. 8.18. В колонне, оборудованной клапанными тарелками, измеренное по методу ASTM наложение температур выкипания 95 % легкой дизельной (ЛД) и 5 % тяжелой дизельной (ТД) фракции А/(5 95) % составило 19 °С. Общий выход газойлевой (дизельной) фракции — около 20 % на нефть. [c.362] Переоснашение промывной секции колонны максимально увеличивает ее технологическую гибкость и позволяет улучшить качество и повысить выход продукта. [c.363] При использовании насадки mellapak в вакуумной колонне, работающей по топливному варианту с получением широкой фракции тяжелого вакуумного газойля — сырья каталитического крекинга, в значительной степени снижается перепад давления в колонне. Вследствие этого давление в зоне испарения уменьшается с 65 мм рт. ст. (8,7 кПа) до 50 мм рт. ст. (6,7 кПа). Выход легкого газойля, оставшегося в мазуте после атмосферной перегонки нефти, увеличивается с 3 до 4 % (по отношению к питанию колонны). [c.363] Кроме того, благодаря насадке улучшается разделение на легкий и тяжелый газойли. [c.363] Усовершенствованное устройство промывной секции позволяет уменьшить содержание металлов и коксуемость по Конрадсону в газойле при минимальном расходе промывочной жидкости. [c.363] Решение проблемы глубокой вакуумной перегонки (увеличение выхода тяжелого вакуумного дистиллята) при одновременном улучшении его качества достигается путем реконструкции вакуумной колонны на одном из отечественных НПЗ с оснащением ее регулярными насадками фирмы Кох-Глитч с распределителями пара и жидкости (рис. 8.19). [c.363] Такая реконструкция позволяет также уменьшить перепад давления в колонне и снизить эксплуатационные затраты. Выходы продуктов перегонки мазута западносибирской нефти, их характеристика, а также технологические параметры работы колонны до и после реконструкции приведены в табл. 8.5—8.7. [c.363] Таким образом, использование регулярных насадок позволяет улучшить показатели процессов разделения нефтяного сырья как в атмосферной, так и в вакуумной секции установок первичной переработки нефти. [c.366] Проведенная на ряде отечественных НПЗ реконструкция с заменой тарелок на новые, более эффективные контактные устройства позволила повысить четкость разделения нефти на фракции, качество отбираемых фракций, т. е. степень подготовки сырья для последующих процессов переработки на НПЗ как топливного, так и масляного профиля. [c.366] При использовании насадок увеличивается общая искривленная поверхность стекающей жидкости в тонком слое, в результате чего возрастает эффективность испарения этой жидкости и взаимодействие с парами. [c.366] Другим способом интенсификации процесса прямой перегонки нефти является использование принципа регулирования коллоидно-дис-персного состояния сырья и фазовых переходов путем соответствующего воздействия на сырье — нефть, мазут, которые представляют собой не молекулярные растворы, а дисперсные системы. К таким воздействиям относятся оптимальное компаундирование нефтей и нефтяных остатков разной химической природы, введение активирующих добавок, ПАВ, применение ультразвука, магнитного поля и др. [c.366] Например, для капли воды г= 10 см, а = 73 дин/см, К = 18 см /моль, Рг/Ро = т. е. давление увеличивается на 1 %. Для капли с г = 10 см, Рг Ро = 1Л1, т.е. на 11 %. [c.366] На базе исследований атмосферно-вакуумной перегонки было установлено, что смешение нефтей разного основания (парафинистой и ароматизованной смолистой) в оптимальном соотношении позволяет повысить степень дисперсности системы (по сравнению с исходными компонентами) и при этом обеспечить повышение отбора светлых фракций против расчетного по аддитивности. [c.367] для оптимальной смеси ухтинской и западносибирской нефтей в соотношении 30 70 выход фракций до 350 °С при атмосферной перегонке выше расчетного на 3—3,5 %, а в соотношении 50 50 — напротив, ниже расчетного на 2—2,5 %. То же относится и к вакуумной перегонке остатков выше 350 °С, полученных из указанных нефтей. Увеличение выхода паровой фазы в активированном сырье (при оптимальном соотношении компонентов) происходит за счет снижения работы образования пузырьков пара вследствие уменьшения межфазного поверхностного натяжения. По тем же причинам должна снизиться энергия активации молекул для преодоления граничного потенциального барьера. Было предложено оценивать энергию межмолекулярного взаимодействия в граничном слоем по энтальпии фазового перехода (АЯф ), рассчитанной по результатам термогравиметрических исследований. [c.367] При перегонке смеси мазутов указанных нефтей в оптимальном соотношении 30 70 снижается температура начала испарения (с 513 и 503 К для исходных мазутов до 487 К для смеси), увеличивается количество испарившегося вешества и снижается энтальпия парообразования (с 1386 и 1439,6 кДж/кг до 1290,5 кДж/кг для смеси). Это показывает, что оптимальная смесь сырьевых компонентов характеризуется меньшей энергией межмолекулярного взаимодействия, чем исходные компоненты (минимальное значение энтальпии парообразования) поэтому при равенстве подведенной энергии (тепла) частицы дисперсной фазы такой системы разрушаются легче, следствием чего и являются более низкие энтальпия испарения и температура начала фазового перехода. Это подтвердилось и результатами реологических исследований образцов — скорость разрушения структуры при повышении температуры оптимальной смеси составила 42 Па/°С против 39 и 13 Па/ С для исходных образцов (ароматизированного и парафинистого соответственно). Отбор вакуумных дистиллятов при перегонке смеси увеличился на 7—8 % по сравнению с рассчитанными по аддитивности. [c.367] Известно, что в последние годы в совместную переработку с нефтью вовлекают газоконденсаты. Создание устойчивых к расслоению нефтяных и нефтегазоконденсатных смесей благоприятно влияет не только на их перекачку и хранение, но и на перегонку. [c.368] Таким образом, смешением компонентов, различающихся химическим, фракционным составом и физико-химическими свойствами, можно изменить баланс сил межмолекулярного взаимодействия, диспергировать систему, что является необходимым условием облегчения процесса образования новой паровой фазы. [c.368]

Вернуться к основной статье

chem21.info

Способ прямой перегонки нефти на малогабаритной установке

Изобретение относится к нефтеперерабатывающей промышленности, в частности к получению бензина и моторных топлив с низкой температурой застывания путем прямой перегонки нефти в территориально удаленных районах. Способ включает перегонку нефти на малогабаритной установке, оборудованной печью для нагрева сырья, сложной атмосферной колонной 1, предназначенной для получения бензина, дизельного топлива марок "летнее" или "зимнее", широкой фракции углеводородов и мазута. Нагретую в печи нефть разделяют на три потока, первый из которых подают в зону питания основной колонны 1, которая связана с двумя стриппинг-колоннами 2 и 3, а два других потока нефти используют для подачи тепла с помощью косвенного теплообмена в низ стриппинг-колонн 2 и 3. После рекуперации тепла каждый из потоков нефти с низа 2 и 3 направляют на разделение в колонну 1. С верха колонны 1 отбирают дистиллят бензиновой фракции, который после конденсации выводят в виде товарного бензина. Из укрепляющей части колонны 1 с ряда расположенных друг над другом тарелок отбирают два боковых погона, которые подают в стриппинг-колонны 2 и 3. Стриппинг-колонны оборудованы клапанными тарелками. Предпочтительно боковые погоны с тарелок 4, 6 и 8 основной колонны 1 направляют в стриппинг-колонну 2, а боковые погоны с тарелок 5, 7 и 9 колонны 1 подают в стриппинг-колонну 3. В результате с низа колонн 2 и 3 получают базовые фракции дизельного топлива, которые охлаждают и отводят в товарный парк. С низа колонны 1 выводят остаток перегонки - мазут, частично используемый в качестве топлива в печи 4 для нагрева сырья. Способ позволяет получать максимальный выход товарных фракций от их потенциального содержания в сырье. 2 з.п. ф-лы, 1 ил., 3 табл.

 

Изобретение относится к нефтеперерабатывающей промышленности, в частности к получению бензина и дизельного топлива путем прямой перегонки нефти как на ее месторождениях, так и в территориально удаленных районах от места ее добычи.

Многие регионы Российской Федерации не имеют нефтеперерабатывающих заводов и поэтому строительство малогабаритной установки по переработке нефти и газового конденсата может частично решить вопросы обеспечения товарными нефтепродуктами, в том числе моторными топливами с низкими температурами застывания для районов Крайнего Севера и Западной Сибири.

Обычно известные способы получения дизельного топлива предусматривают применение процессов первичной перегонки нефти в атмосферной колонне с отбором прямогонных фракций в сочетании со вторичной перегонкой полученных дизельных фракций, их гидроочисткой, депарафинизацией с последующим компаундированием с прямогонными керосиновыми фракциями или другими нефтяными продуктами и путем добавления присадок. При этом за счет применения вторичных процессов нефтепереработки существенно повышается себестоимость получаемого топлива и требуется увеличение материальных ресурсов для его производства.

Известен способ получения зимнего дизельного топлива, предусматривающий первичную перегонку нефти в колонне при атмосферном давлении с выделением керосиновой фракции 120-250°С и дизельных фракций, 96% которых выкипает в пределах 140-320°С и 210-350°С. Часть дизельной фракции 210-350°С в количестве от 10 до 30% подвергают вторичной перегонке, при которой выделяют фракцию НК-200°С, а также отбирают фракцию 200-320°С, которую подвергают каталитической гидроочистке и цеолитной депарафинизации. Дизельные фракции 140-320°С и 210-350°С смешивают в заданном соотношении, полученную смесь компаундируют с депарафинированной фракцией 200-320°С и с исходной или гидроочищенной керосиновой фракцией и бензином. В полученное базовое топливо добавляют присадку (патент RU 2108370 С1, опубл. 1998). Недостатком известного способа является многостадийность технологического процесса.

Известен способ получения дизельного топлива и керосина путем фракционирования нефти на установке прямой перегонки. В основной сложной атмосферной колонне отбирают три целевые фракции в виде боковых погонов, каждый из которых подвергается дополнительной отпарке в соответствующем стриппинге. Таким образом выделяют керосиновую фракцию 120-260°С (первый стриппинг), дизельную фракцию 160-320°С (второй стриппинг) и дизельную фракцию 230-360°С (третий стриппинг). Керосиновую фракцию подвергают дополнительной перегонке с получением товарной фракции НК - 240°С. Часть смеси полученных дизельных фракций из второго и третьего стриппингов также направляют на вторичную перегонку для отбора фракции 200-320°С, которую подвергают каталитической гидроочистке, депарафинизации и затем используют как компонент товарного продукта. Компаундирование выделяемых фракций позволяет вырабатывать зимние дизельные топлива с температурами застывания минус 35°С и минус 45°С (Патент RU 2039791 С1, опубл. 1995).

Недостатком данного способа является многоступенчатая схема переработки, в результате чего снижается выход целевых фракций. Кроме того, возникает необходимость использования при компаундировании дефицитных прямогонных керосиновых фракций и депрессорных присадок для доведения эксплуатационных показателей товарного дизельного топлива до нормативных требований.

Известен способ получения дизельного топлива летнего вида путем разделения нефти в сложной ректификационной колонне с выводом с разных уровней по высоте колонны нескольких боковых погонов. При этом из ректификационной колонны выводят по крайней мере один балластный компонент с уровня, лежащего между выводами фракций, вовлекаемых в состав дизельного топлива. Способ предусматривает отбор дизельных фракций со следующими пределами температуры выкипания (°С): первая фракция от 185-194 до 265-280, вторая фракция от 217-234 до 312-331 и третья фракция от 240-262 до 232-390. Дизельное топливо летнее приготавливают путем смешения отобранных фракций по определенной схеме. В результате полученное дизельное топливо характеризуется пониженным содержанием фракции, выкипающей в пределах 230-300°С, которая фактически является наполнителем топлива и не влияет на такие важные показатели качества как цетановое число и температура застывания. При сгорании такого топлива в двигателях уменьшается количество вредных выбросов в атмосферу (патент SU 1816792 А1, опубл. 1993). Недостатком данного способа является относительно невысокий выход дизельного топлива на исходную нефть за счет высокой избирательности использования продуктов перегонки для получения целевого продукта.

Наиболее близким по технической сущности и достигаемому результату к заявляемому изобретению является способ прямой перегонки нефти для производства бензина, керосина, дизельного топлива марки "летнее" и дизельного топлива марки "зимнее". При осуществлении данного способа поток нагретой до 355-375°С нефти перегоняют в сложной атмосферной колонне, оборудованной тремя боковыми отпарными секциями (стриппингами). С верха атмосферной колонны отбирают товарную фракцию бензина. В виде боковых погонов из колонны выводят керосиновую, дизельную и газойлевую фракции, которые направляют в стриппинг-секции, а в качестве остатка перегонки из куба колонны отбирают мазут. С низа боковых стриппингов получают целевые фракции, а именно керосиновую (НК 140°С и КК 240°С), дизельную (НК 200°С и КК 320°С) и газойлевую (НК 230°С, 80% выкипает до 360°С). Путем смешивания указанных фракций с конденсатами паров, образующихся в основной и отпарных колоннах, и других нефтепродуктов того же самого процесса, приготавливают дизельное топливо зимнее (НК 145°С, 50% выкипает не выше 250°С, КК 305°С, температура застывания - не выше минус 36°С), дизельное топливо летнее (НК 190°С, 50% выкипает не выше 275°С, КК 357°С, температура вспышки - не ниже 40°С), а также дизельное топливо утяжеленного состава. Кроме того, товарными продуктами являются бензин и керосин (патент SU 1537687 А1, опубл. 1990).

Недостаток последнего способа заключается в том, что вследствие недостаточно эффективной рекуперации тепла отходящих потоков продуктов необходим высокий удельный расход дополнительной энергии. Кроме того, все известные способы сопровождаются пониженным отбором светлых нефтепродуктов и дизельного топлива от потенциала.

Техническая задача, на решение которой направлено предлагаемое изобретение, заключается в осуществлении на малогабаритной установке процесса прямой перегонки нефти с исключением недостатков описанных выше способов. Как правило, известные способы не позволяют осуществить производство качественного дизельного топлива на малогабаритных предприятиях, где не предусмотрены процессы вторичной обработки прямогонных нефтяных фракций.

В соответствии с предлагаемой схемой малогабаритной установки весь технологический процесс ректификации сырой нефти протекает в более гибком режиме в зависимости от требований к качеству получаемой товарной продукции. Исходным сырьем является малосернистая нефть с содержанием светлых нефтепродуктов не менее 55% мас. Малое количество серы в исходной нефти обеспечивает получение товарных бензинов и дизельных топлив с низким содержанием серосодержащих продуктов и не требует специальных процессов гидроочистки. Вместе с тем в соответствии с предложенным способом снижение удельного расхода потребляемой энергии достигается за счет целесообразного оформления технологической схемы процесса, включающего рекуперацию тепла исходного нагретого сырья и отходящих фракций.

Для решения поставленной задачи проводят перегонку нефти с получением бензина, дизельного топлива марок "летнее" или "зимнее" и мазута на малогабаритной установке, включающей печь для нагрева сырья, сложную атмосферную колонну 1 с верхним циркуляционным орошением, связанную с боковыми колоннами 2 и 3, а также теплообменники и холодильники. Исходную нагретую в печи нефть разделяют на три потока, первый из которых подают в зону питания основной колонны 1. Два других потока нагретой нефти используют для подачи тепла с помощью косвенного теплообмена в низ стриппинг-колонн 2 и 3. Затем каждый из потоков нефти, выходящий из зоны обогрева низа 2 и 3, направляют на разделение в ректификационную колонну 1. С верха 1 отбирают дистиллят бензиновой фракции, который охлаждают, конденсируют и полученный конденсат выводят в виде товарного бензина. При этом часть конденсата в качестве острого циркуляционного орошения подают на верх колонны 1. Из укрепляющей части колонны 1 с ряда расположенных друг над другом тарелок отбирают два боковых погона промежуточных фракций, причем один из погонов подают в стриппинг-колонну 2, а другой направляют в стриппинг-колонну 3, где боковые погоны подвергаются дополнительной дистилляции. В результате с низа стриппингов 2 и 3 получают две базовые фракции дизельного топлива, которые охлаждают и отводят в товарный парк. С верха каждой из стриппинг-колонн отбирают товарную широкую фракцию углеводородов (ШФУ). Из куба колонны 1 выводят остаток перегонки - мазут, часть которого используют в качестве топлива в печи для нагрева сырья.

Предпочтительно боковые погоны, направляемые в стриппинг-колонну 2, выводят с тарелок 4, 6 и 8 основной колонны 1, а боковые погоны, поступающие в стриппинг-колонну 3, выводят с тарелок 5, 7 и 9 колонны 1. Стриппинг-колонны оборудованы клапанными тарелками.

Способ поясняется прилагаемой принципиальной технологической схемой процесса (см. чертеж) и примером его осуществления.

Описание технологической схемы процесса, представленной на чертеже.

Малогабаритная установка для переработки нефти включает печь 4, атмосферную ректификационную колонну 1, две стриппинг-колонны 2 и 3, в которые поступают боковые погоны из средней части основной колонны 1, а также содержит теплообменную аппаратуру, продуктовые емкости, насосы, средства контроля и автоматического управления процессом.

Обессоленная и обезвоженная нефть подвергается предварительному нагреву в рекуперативном теплообменнике 5 путем теплообмена с циркулирующим потоком остатка перегонки (мазута), выводимого с низа ректификационной колонны 1, и далее проходит через печь 4, где нагревается до 290-340°С.

Поток нагретой в печи нефти используется в качестве теплоносителя в теплообменнике 6 для подогрева "горячей струи", используемой для поддержания необходимого теплового режима в кубе ректификационной колонны 1. На выходе из теплообменника 6 нефть разделяется на три потока, первый из которых поступает в зону питания основной колонны 1 через теплообменник 6. Два других потока нефти используются для подачи тепла в низ стриппинг-колонн 2 и 3 с помощью теплообмена через встроенные змеевики в кубах колонн. После чего каждый из потоков нефти раздельно подается на перегонку в среднюю часть ректификационной колонны 1.

В сложной атмосферной колонне 1, объединенной со стриппингами 2 и 3, производят разделение сырой нефти на основные фракции, включающие бензин, дизельное топливо, широкую фракцию углеводородов (ШФУ) и мазут.

На верху колонны 1 отбирается дистиллят бензиновой фракции, который охлаждается, частично конденсируется в холодильнике воздушного охлаждения 7 и поступает в сборник 8. С верха 8 отводится газообразная фракция легких углеводородов, которую направляют в товарно-сырьевой парк. Конденсат с низа сборника 8 представляет собой фракцию прямогонного бензина и перекачивается в парк товарной продукции. Часть конденсата из сборника 8 используется в качестве острого орошения на верху колонны 1.

Стриппинг-колонны 2 и 3 предназначены для выделения фракций дизельного топлива как основы для получения товарных дизельных топлив. Стриппинг-колонны оборудованы клапанными тарелками, что позволяет осуществить дополнительную дистилляцию потоков, поступающих из основной колонны. Для этого из укрепляющей части основной колонны 1 с ряда расположенных друг над другом тарелок отбирают два боковых погона дизельных фракций. Один погон подают в стриппинг-колонну 2, а другой направляют в стриппинг-колонну 3. Таким образом, подача боковых погонов дизельного топлива из основной колонны 1 в стриппинг-колонны 2 и 3 позволяет осуществить их дополнительную дистилляцию.

Фракции дизельного топлива отбираются с низа стриппинг-колонн 2 и 3, охлаждаются в холодильниках воздушного охлаждения, соответственно 9 и 10, после чего с температурой 45°С отводятся в товарный парк самотеком.

С верха каждой из стриппинг-колонн 2 и 3 выделяются потоки широкой фракции углеводородов (ШФУ), которые объединяются и направляются в товарно-сырьевой парк.

С низа колонны 1 выводят остаток перегонки - мазут. Как сказано выше, часть кубового остатка колонны 1 нагревается в теплообменнике 6 и возвращается в низ колонны в качестве "горячей струи". Основная часть остатка перегонки в виде мазута охлаждается в рекуперативном теплообменнике 5, который предназначен для нагрева сырой нефти и выводится с установки в парк хранения готовой продукции. Полученный мазут может быть использован в качестве топочного мазута или в виде печного топлива. В смеси с исходной нефтью мазут также может служить топливом для технологической печи 4.

ПРИМЕР осуществления способа

Малогабаритный нефтеперерабатывающий комплекс имеет производительность по сырью 25-50 тысяч тонн нефти в год и предназначен для эксплуатации в территориально удаленных районах от места добычи нефти.

Процесс осуществляется путем переработки малосернистой легкой нефти с содержанием светлых нефтепродуктов не менее 55% мас. Низкое содержание серы в исходной нефти обеспечивает получение товарных бензинов и дизельных топлив с низким содержанием серы и не требует специальных процессов гидроочистки.

Температурный режим перегонки нефти приведен в табл.1.

Характеристика образца исходной нефти приведена в табл.2.

Обессоленная нефть предварительно нагревается в рекуперативном теплообменнике 5 до температуры 180-220°С за счет теплоты кубового остатка колонны 1 и далее подогревается в печи 4 до 290-340°С.

Поток нагретой в печи нефти направляется в качестве теплоносителя в теплообменник 6, где подогревается поток "горячей струи" из куба колонны 1. На выходе из теплообменника 6 нефть разделяется на три потока. Первый поток поступает в качестве питания в основную колонну 1. Два других потока нагретой нефти порознь подают в низ стриппинг-колонн 2 и 3, где за счет теплообмена через встроенные в куб змеевики нефть обогревает кубовую часть колонн 2 и 3. Затем каждый из потоков нефти раздельно поступает в виде питания в среднюю часть колонны 1.

В сложной атмосферной колонне 1, объединенной со стриппингами 2 и 3, получают такие основные фракции как бензин, широкая фракция, углеводородов (ШФУ), "летнее" или "зимнее" дизельное топливо и мазут. Давление на верху колонны 1 около 0,25 МПа, температура верха 110-160°С, температура низа 280-335°С. Температурный режим перегонки нефти в колонне 1 приведен в табл.1.

С верха колонны 1 отбирается дистиллят бензиновой фракции, который охлаждается и частично конденсируется в холодильнике воздушного охлаждения 7 и поступает в сборник 8. С верха 8 выводится парогазовая смесь легких углеводородов, которая направляется в товарно-сырьевой парк. Конденсат с низа сборника 8 представляет собой фракцию прямогонного бензина (НК 45°С, КК 160-180°С), который перекачивается в парк товарной продукции. Часть конденсата из сборника 8 подается в качестве орошения на верх колонны 1. Полученная бензиновая фракция после компаундирования с добавками и присадками может использоваться как компонент автомобильных бензинов Аи-80 и Аи-92.

Стриппинг-колонны 2 и 3 предназначены для выделения двух фракций дизельного топлива. Для этого из укрепляющей части основной колонны 1 отбирают два боковых погона. При этом погоны, поступающие в стриппинг-колонну 2, выводят с тарелок 4, 6 и 8 основной колонны 1, а погоны, поступающие в стриппинг-колонну 3, отбирают с тарелок 5, 7 и 9 колонны 1.

С верха каждой из стриппинг-колонн 2 и 3 выделяются потоки широкой фракции углеводородов (ШФУ), которые объединяются и направляются в товарно-сырьевой парк и, при необходимости, смешиваются с бензиновой фракцией.

Товарные фракции дизельного топлива выводятся с низа стриппинг-колонн 2 и 3, охлаждаются в холодильниках воздушного охлаждения, соответственно 9 и 10, после чего с температурой 45°С отводятся в товарный парк самотеком.

С низа колонны 1 выводят остаток перегонки - мазут (выход на нефть не более 24%). Как сказано выше, часть кубового остатка нагревается в теплообменнике 6 и возвращается в низ колонны в качестве "горячей струи", а основная часть мазута охлаждается в рекуперативном теплообменнике 5, который предназначен для предварительного нагрева сырой нефти, и выводится с установки в парк хранения готовой продукции. Полученный мазут может быть использован в качестве топочного мазута, товарного мазута или в виде печного топлива. В смеси с исходной нефтью мазут также может служить на установке топливом для технологической печи 4. Бензиновая фракция после компаундирования с добавками и присадками может использоваться как товарный бензин различных марок.

Реализация процесса по разработанной схеме позволяет гибко регулировать качество получаемых дизельных фракций. Без существенной переналадки технологического оформления процесса перегонки в зависимости от потребности можно получать дизельное топливо марки "летнее", либо марки "зимнее". При необходимости возможно вырабатывать дизельное топливо марки "арктическое". Его получают непосредственно на установке, для чего в полученное базовое дизельное топливо вводят депрессорную присадку (сополимер этилена с винилацетатом с молекулярной массой 100-7500 в количестве 0,01-0,5 мас.%) в виде раствора в дизельном топливе или растворителе.

Таким образом, представленный технологический процесс ректификации сырой нефти на малогабаритной установке, производительностью по сырью 25-50 тысяч тонн нефти в год, проводится в гибком режиме в зависимости от требований к качеству получаемой товарной продукции. Наличие в схеме переработки стриппинг-колонн 2 и 3 позволяет получить качественные дизельные топлива марок "летнее" и "зимнее", а также увеличить выход светлых нефтепродуктов за счет повышения четкости ректификации и дополнительного отбора широкой фракции углеводородов (ШФУ). Процесс характеризуется улучшением качественных характеристик производимых моторных топлив.

Отсутствие содержащих серу выбросов в атмосферу при сжигании топлива улучшает экологические показатели процесса.

Реализация предлагаемого способа позволяет получать максимальный выход товарных фракций от их потенциального содержания в сырье. При этом возможно снижение общей себестоимости получаемой продукции за счет рационального использования всех полученных нефтяных фракций. Изготовленные моторные и котельные топлива имеют высокое качество и соответствуют требованиям ГОСТ или ТУ. Характеристика конечных продуктов приведена в табл.3.

Таблица 1Температурный режим перегонки нефти
№№ТемператураПоказатели, °С
1Нефти после печи П-1290-340
2Нефти в основной колонне К-1:
питание270-300
верх110-160
куб280-335
орошение40-45
"горячая струя"340
Таблица 2Характеристика образца перерабатываемой нефти
№№Наименование показателейРазмерностьВеличина
1Плотность при 20°С,кг/м3796,0
2Фракционный состав
Температура начала кипения, не ниже°С50
Отгоняется при температуре, не выше
10%°С100
50%220
70%300
90%380
Конец кипения, не выше400
3Вязкость кинематическая при 50°Смм2/с1,66
4Массовая доля серы% мас.0,3
5Массовая доля сероводорода% мас.отсутствие
6Содержание меркаптановой серы% мас.0,008
7Массовая доля воды% мас.отсутствие
8Концентрация солеймг/дм326,02
9Температура застывания°СМинус 18
10Содержание механических примесей% мас.0,0064
Таблица 3Выход и характеристика конечных фракций
№№Наименование показателейРазмерностьВеличина
1Бензин
Выход на перерабатываемую нефть% мас.25,0-30,0
Плотность (20°С)г/см30,718
НК°С45-50
10%°С80
50%°с115
90%°с152
КК°с173
2Дизельное топливо зимнее
Выход на перерабатываемую нефть% мас.38,0
Плотность (20°С)г/см30,805
10%°С155
50%°С212
96%°С311
Вязкость кинематическая (20°С)мм2/с2,71
3Дизельное топливо летнее
Выход на перерабатываемую нефть% мас.44,0
Плотность (20°С)г/см30,850
10%°С173
50%°С234
96%°С334
Вязкость кинематическая (20°С)мм2/с3,34
4Широкая фракция углеводородов
Выход на перерабатываемую нефть% мас.5,0-8,0
Плотность (20°С)г/см30,637
НК°С37
10%°С64
50%°С88
90%°С104
КК°C115
5Мазут
Выход на перерабатываемую нефть% мас.24,0
Плотность (20°С)г/см30,915
Вязкость условная (80°С)°ВУ3,4

1. Способ перегонки нефти на малогабаритной установке, включающей печь для нагрева сырья, сложную атмосферную колонну 1 с верхним циркуляционным орошением частью конденсата дистиллятной фракции и боковыми отпарными колоннами, теплообменники и холодильники, с получением бензина, дизельного топлива марок "летнее" или "зимнее" и мазута, отличающийся тем, что исходную нагретую в печи нефть разделяют на три потока, первый из которых подают в зону питания основной колонны 1, которая в качестве отпарных колонн оборудована двумя стриппинг-колоннами 2 и 3, а два других нагретых потока нефти используют для подачи тепла с помощью косвенного теплообмена в низ стриппинг-колонн 2 и 3, затем каждый из потоков нефти с низа стриппинг-колонн 2 и 3, направляют на разделение в колонну 1, с верха которой отбирают дистиллят бензиновой фракции, который охлаждают, конденсируют и полученный конденсат выводят в виде товарного бензина, а из укрепляющей части колонны 1 с ряда расположенных друг над другом тарелок отбирают два боковых погона, причем один из погонов подают в стриппинг-колонну 2, а другой направляют в стриппинг-колонну 3, где боковые погоны подвергаются дополнительной дистилляции, в результате чего с низа стриппинг-колонн 2 и 3 получают базовые фракции дизельного топлива, которые охлаждают и отводят в товарный парк, а с верха каждой из стриппинг-колонн отбирают товарную широкую фракцию углеводородов, и с низа колонны 1 выводят остаток перегонки - мазут, частично используемый в качестве топлива в печи для нагрева сырья.

2. Способ по п.1, отличающийся тем, что боковые погоны, направляемые в стриппинг-колонну 2, выводят с тарелок 4, 6 и 8 основной колонны 1, а боковые погоны, поступающие в стриппинг-колонну 3, выводят с тарелок 5, 7 и 9 колонны 1.

3. Способ по п.1, отличающийся тем, что стриппинг-колонны оборудованы клапанными тарелками.

www.findpatent.ru

Переработка нефти

1.Основные способы переработки нефти

Автомобильные топлива, смазочные масла и специальные жидкости являются продуктами переработки нефти. Перед переработкой нефть очищают от механических примесей, обезвоживают и обессоливают, после чего подвергают переработке прямой перегонкой или деструктивными методами (вторичные процессы с изменением структуры углеводородов).

схема переработки нефти

1.1.Схема разделения нефти на фракции различными методами переработки показана на рис. 1. На рисунке указаны средние температуры выкипания получаемых продуктов.

На нефтеперерабатывающих заводах переработка нефти ведется в установках непрерывного действия, где осуществляются одновременно процессы атмосферной перегонки нефти и вакуумной перегонки мазута. При нагреве нефти первыми закипают и испаряются наиболее легкие углеводороды, которые отбираются и используются в качестве сжиженных газов и бензина. Затем закипают более тяжелые углеводороды, из которых получают лигроин, керосин и дизельные топлива. В конце прямой перегонки остаются самые тяжелые углеводороды, образующие мазут.Прямая перегонка происходит по следующей схеме (рис. 2). В трубчатой, печи 1 нефть нагревается до определенной температуры и поступает в ректификационную колонну 2, где переходит в парообразное состояние и разделяется на ректификационных тарелках 3 на отдельные фракции.Тарелки представляют собой перфорированные пластины с патрубками и колпачками.   Через них   легкие   углеводороды в парообразном состоянии проходят в верхнюю часть колонны, а более тяжелые конденсируются и стекают на тарелки, расположенные ниже. Таким образом, на каждую ректификационную тарелку снизу поступают пары углеводородов, а сверху на ней уже находятся углеводороды в жидкой фазе, которые могут быть отобраны в соответствии с их температурой конденсации через систему теплообменников 4, 6. Так, фракции бензинов отбираются при температурах от 30 до 200°С, керосинов — от 150 до 300, дизельных топлив — от 200 до 300, мазутов — выше 350°С.Прямая перегонка является первой частью более глубокого процесса переработки нефти. После отбора фракций, кипящих при температурах до 300°С, оставшиеся мазутные фракции подвергают вторичной переработке в вакуумной колонне 5, в результате чего происходит расщепление крупных молекул углеводородов на более мелкие с получением масляных дистиллятов — соляровых, веретенных, машинных и цилиндровых. Машинные дистилляты являются основой для получения автомобильных масел.Для увеличения выхода из нефти светлых нефтепродуктов (бензина, дизельного топлива   газойлевые фракции и гудрон подвергают также вторичным процессам переработки, которые называют крекингами. В переводе с английского слово «крекинг» означает расколоть, расщеплять. Применительно к процессу переработки нефти крекинг представляет процесс расщепления высокомолекулярных углеводородов на низкомолекулярные типа бензинов. Процессы крекинга позволяют получать до 75% бензина из нефти. В нефтеперерабатывающей промышленности при¬меняют в настоящее время термический и каталитический крекинги.Термический крекинг — это технологический процесс, в котором используется действие высокой температуры (470—540°С) и давление 2,0—7,0 МПа для расщепления молекул тяжелых углеводородов мазутных фракций на более легкие, входящие в состав газа, бензина, керосина и др. При термическом крекинге из мазута удается получить до 40% бензиновых фракций, однако бензины термического крекинга содержат значительное количество непредельных углеводородов, что ухудшает их химическую стабильность.Более совершенным процессом, позволяющим получать высококачественные нефтепродукты, является каталитический крекинг.

Каталитический крекинг— процесс превращения высоко кипящих фракций (газойля, мазута) в высокооктановые компоненты бензинов, протекающий при температуре 450—500°С, давлении, близком к атмосферному, и в присутствии катализатора, ускоряющего расщепление молекул исходного сырья.Разновидностью каталитического крекинга является гидрокрекинг, который позволяет расщеплять даже тяжелые молекулы гудрона под давлением водорода и в присутствии новых эффективных катализаторов. Выход светлых нефтепродуктов из нефти при использовании гидрокрекинга можно довести до 90%.перегонка нефти

1.1.1.Рис. 2. Схема установки для перегонки нефти и мазута:

1 — трубчатая печь, 2 — ректификационная колонна, 3 — ректификационные тарелки, теплообменники, 5 — вакуумная колонна.{jcomments on}

www.autoezda.com

Интенсификация процесса прямой перегонки нефти

    Интенсификация процесса прямой перегонки нефти [c.362]

    Другим способом интенсификации процесса прямой перегонки нефти является использование принципа регулирования коллоидно-дис-персного состояния сырья и фазовых переходов путем соответствующего воздействия на сырье — нефть, мазут, которые представляют собой не молекулярные растворы, а дисперсные системы. К таким воздействиям относятся оптимальное компаундирование нефтей и нефтяных остатков разной химической природы, введение активирующих добавок, ПАВ, применение ультразвука, магнитного поля и др. [c.366]

    Проблема борьбы с коррозией нефтезаводской и химической аппаратуры не является новой, она имеет свою длительную историю, сопутствующую истории развития химии и нефтепереработки. Особенной остроты эта проблема достигла в последние 20—30 лет в связи с непрерывной интенсификацией технологии основной химии и нефтепереработки, с бурным развитием химии полимеров, синтетических материалов и сульфитно-целлюлозной промышленности. Повышение температур и давлений основных химических процессов и процессов нефтепереработка, включение в переработку сернистых нефтей восточных районов страны, объединение серии процессов — прямой перегонки, крекинга, стабилизации, очистки вторичной перегонки и т. д. — в сложных комбинированных установках выдвинули перед машиностроителями и эксплуатационниками новые задачи по защите аппаратов от разрушения коррозией. [c.172]

    Особое внимание авторы уделили физико-химическим и коллоидно-дисперсным свойствам жидкого нефтяного сырья (нефти, нефтяных фракций и остатков) и технологии его переработки, ассортименту продуктов нефтеперерабатывающих предприятий, а также процессам подготовки нефти к переработке, прямой перегонке нефти (атмосферной, атмосферно-вакуумной) и вторичной перегонке дистиллятов, наметили перспективы дальнейших разработок в области интенсификации технологических процессов и воздействия различных факторов на качество исходного сырья и получаемых продуктов. [c.7]

    Другим методом интенсификации прямой перегонки нефти является введение в сырье активирующих добавок — концентратов ароматических углеводородов, отходов химической и нефтехимической промышленности, присадок, деэмульгаторов. Все эти добавки обладают поверхностно-активными свойствами. Наибольшей активностью в качестве добавок к сырью перегонки (нефти, мазуту) обладают деэмульгаторы, используемые в процессе обезвоживания и обессоливания нефти. Эти добавки уже при малых концентрациях, сопоставимых с их концентрацией на ЭЛОУ, повышают кинетическую устойчивость (фактор устойчивости Фд повышается) нефтяной системы и отбор дистиллятных фракций, а также изменяют соотношение их выходов в зависимости от концентрации добавки (табл. 8.8). [c.368]

chem21.info

Первичная перегонка нефти Назначение первичной перегонки

    На рис. 5.2 показана укрупненная схема получения масел из остатка первичной дистилляции нефти - мазута. Вакуумной перегонкой из него выделяют обычно две дистиллятные фракции - маловязкую (350 - 420 °С) и вязкую (420 - 500 °С), а также остаток - гудрон (выше 500 °С). Из них соответственно вырабатывают в конечном итоге базовые дистиллятные масла (маловязкое и вязкое) и базовое высоковязкое остаточное масло, из которых компаундированием и вводом присадок получают товарные масла различного назначения. [c.247]     Современные ректификационные аппараты классифицируются в зависимости от их технологического назначения, давления, способа осуществления контакта между паром и жидкостью и внутреннего устройства, обеспечивающего этот контакт. По технологическому назначению на современных комбинированных установках АВТ ректификационные аппараты делятся на колонны атмосферной перегонки нефти, вакуумной перегонки мазута, стабилизации легких фракций, абсорбции жирных газов переработки нефти, вторичной перегонки широкой бензиновой фракции и др. По проводимому процессу различают следующие ректификационные колонны атмосферные, вакуумные, стабилизаторы и др. В зависимости от давления колонны делятся на вакуумные, атмосферные и работающие под давлением. В качестве контактного устройства в колоннах применяют тарелки. Часто эти колонны именуются тарельчатыми. По способу контакта между паром (газом) и жидкостью все ректификационные аппараты на установках первичной перегонки нефти характеризуются непрерывной подачей обеих фаз. [c.50]

    В технологии нефтепереработки к первичной перегонке относят процессы атмосферной перегонки 1 ефти и вакуумной перегонки мазута. Их назначение состоит в разделении нефти на фракции для последующей переработки или использования как товарных нефтепродуктов. [c.64]

    Трубчатая печь — это основной аппарат огневого нагрева нефтеперерабатывающих установок. Назначение трубчатой печи установок первичной перегонки нефти состоит в том, чтобы нагреть сырье до температуры, достаточной для испарения требуемых фракций при переходе нагретого сырья в испарительный аппарат (испаритель или ректификационную колонну). На установках термического крекинга в трубчатой печи сырье нагревается до требуемой температуры и выдерживается определенное время. [c.69]

    Первичная перегонка нефти (прямая гонка) — процесс переработки нефти, основанный на разделении смеси составляющих ее углеводородов методом фракционной разгонки (ректификации) на отдельные дистилляты (фракции) с определенными интервалами температур кипения. Прямой гонке подвергается вся добываемая нефть. В соответствии с назначением получаемых дистиллятов различают три варианта прямой гонки  [c.126]

    К первичной перегонке относят процессы атмосферной перегонки нефти и вакуумной перегонки мазута. Их назначение состоит в разделении нефти на фракции для последующей их переработки или использования как товарных продуктов. Первичную перегонку осуществляют в атмосферных трубчатых (АТ), вакуумных трубчатых (ВТ) или атмосферно-вакуумных трубчатых (АВТ) установках. [c.343]

    Назначение процесса - разделение нефти на фракции для последующей переработки или использования в качестве товарной продукции. Первичная перегонка осуществляется на атмосферных трубчатых (АТ) и атмосферно-вакуумных трубчатых (АВТ) установках. Установки АТ и АВТ часто комбинируются с установками обессоливания нефти (ЭЛОУ). [c.12]

    В последнее время практикуется строительство установок первичной переработки нефти - установок типа АТ, так называемых мини-НПЗ , непосредственно на нефтепромыслах или на объектах, приближенных к ним. Основными продуктами переработки нефти на установках АТ являются широкая фракция легких углеводородов (ШФЛУ), дизельная фракция и мазут. Однако при этом варианте переработки нефти значительная часть средних дистиллятных фракций используется нерационально. На наш взгляд, боковые побочные дистиллятные фракции (погоны, отгоны), получаемые при атмосферной перегонке нефти на установках АТ, целесообразно использовать в качестве исходных компонентов для получения жидкостей специального назначения, таких как антикоррозионная (консервационная) жидкость для скважин, эмульгатор обратных водонефтяных эмульсий и сами эмульсии для различных процессов нефтедобычи, а также топлива для судовых дизелей (судовые топлива). [c.34]

    В связи с тем, что вся технология переработки нефти (как первичная, так и вторичная) базируется на использовании разнообразных методов разделения сложных углеводородных смесей, в книгу помещен раздел, дающий краткие принципиальные сведения о таких процессах, как перегонка и ректификация, абсорбция, кристаллизация, экстракция, термодиффузия, адсорбция, хроматофафия и др. Эти сведения призваны дать общие представления о процессах разделения и облегчить усвоение последующего материала по всем разделам технологии нефти и газа. Одна из глав посвящена описанию систем классификации нефтей и организации их унифицированных исследований. Там же приведена характеристика основных фупп нефтепродуктов, получаемых из нефти и газа, - топлив, масел, парафинов, битумов, растворителей и т. д., их назначение, области применения, кратко рассмотрены способы их получения. Дается перечень определяющих для каждой фуппы физико-химических свойств и их значение для химмотологии. [c.18]

    К процессам первичной перегонки нефти относятся атмосферная перегонка нефти и вакуумная перегонка мазута. Их назначение состоит в разделении нефти на фракции для последующей перегонки или использования как товарных продуктов. Эти процессы осуществляют на атмосферных трубчатках (АТ), вакуумных трубчатках (ВТ) или комбинированных атмосферно- вакуумных трубчатых установках (АВТ). [c.21]

    Регулярный анализ качества факельного газа необходим также для случаев, когда он собирается в газгольдеры с последующей передачей на ГФУ или на сжигание под котлами специального назначения (высокое содержание сернистых соединений, ароматических или непредельных углеводородов, может повлиять на качество продуктов ГФУ или может вызвать коррозию оборудования котла и изменить состав дымовых газов). Особенно важно контролировать количество и качество газа, сжигаемого на факеле на заводах, оснащенных установками большой мощности, так как выброс на них может быть большим. Так, на установке первичной перегонки нефти ЭЛОУ — АВТ-6 расчетный выброс через предохранительный клапан только предварительного эвапоратора составляет 14 м /с. [c.106]

    Гораздо больше потери на нефтеперерабатывающих заводах в связи с неудовлетворительной работой блоков предварительного испарения, а также при стабилизации бензинов на установках первичной перегонки нефти. В результате неудовлетворительной работы этих узлов в газах и рефлюксах прямой перегонки нефти содержатся бензиновые фракции (до 20—40%), а в бензиновых дистиллятах содержатся растворенные газы (включая пропан и даже этан), которые затем безвозвратно теряются. В продуктах перегонки нефти (бензине, рефлюксе и газе) имеет место такое распределение углеводородов Сг—С5, которое весьма затрудняет их дальнейший сбор и переработку. В результате этих потерь в настоящее время на нефтеперерабатывающих заводах лишь 15—20% сжиженных газов (Сз и С4) и не более 80% пентанов от потенциала в товарной нефти, поступающей на заводы, используются по прямому назначению. Если считать потенциал в пластовой нефти, то эти коэффициенты использо-, вания вдвое меньше. [c.11]

    В 1975—76 гг. исследовано защитное действие указанных ингибиторов в лабораторных условиях (гравиметрическим и электрохимическим методами) и на пилотной установке, моделирующей условия первичной перегонки нефти. Установлено, что по защитному действию ингибиторы не уступают ИКБ-2. Изучено побочное действие ингибиторов применительно к условиям использования на установках АТ и АВТ НПЗ. Установлено, что ингибиторы по содержанию смол, азота, по склонности к осадкообразованию находятся на уровне торговых зарубежных ингибиторов аналогичного назначения. [c.11]

    Основными продуктами нефти, получаемыми путем перегонки, являются бензин, керосин, смазочные масла и мазуты. Использование в промышленности первичных продуктов нефти— легких фракций типа бензина и керосина — не вызывает особых трудностей. Использование более тяжелых фракций нефти имеет свои специфические особенности. Смазочные масла различных марок, кроме своего основного назначения (смазки трущихся поверхностей частей механизмов), участвуют в отводе тепла, образовавшегося при трении. Нагретое масло необходимо охлаждать, чтобы оно не потеряло своих смазывающих способностей. Такое охлаждение производится при помощи специальных аппаратов теплообмена — маслоохладителей. В качестве рабочих сред в маслоохладителях применяются охлаждаемая среда — масла различных марок, охлаждающая среда — пресная или морская вода. [c.3]

    В качестве сырья для каталитического риформинга обычно используют бензиновые фракции первичной перегонки нефти. В сырье риформинга могут вовлекаться после глубокой очистки бензины вторичных процессов (термического крекинга, коксования, каталитического и гидрокрекинга). Фракционный состав сырья риформинга зависит от назначения процесса. Если целью процесса является получение аренов (бензола, толуола, ксилолов), то используют фракции, содержащие угле-338 [c.338]

    В ряде случаев на установке для первичной перегонки нефти получают более широкую фракцию — 62—180° С, а затем на установках для вторичной перегонки отбирают необходимые фракции. Можно, как уже отмечалось, подвергать каталитическому рифор-мингу и эту широкую фракцию, как бы объединяя оба назначения процесса каталитического риформинга. В этом случае выделяют из получаемого риформинг-бензина бензол и толуол, а к остатку добавляют головную фракцию (н.к. — 62°С) и высокооктановые добавки. Правда, этот вариант исключает возможность получения ксилолов из всего сырья, подвергнутого такой переработке. [c.185]

    Целью прямой (первичной) перегонки является разделение нефти на фракции, выкипающие при атмосферном давлении в определенных температурных пределах (из расчета получения топлив различного назначения) и остаток, используемый в соответствии с принятым направлением переработки данной нефти. При прямой пе- [c.16]

    Электрообессоливаиие и первичная перегонка. Назначение. Удаление воды и солей нз нефти, разделение нефти на фракции для последующей переработки или использования в качестве товарной продукции. Установка состоит из 2—3 блоков  [c.61]

    Ректификация используется для выделения необходимых определенных фракций прямогонных бензинов в зависимости от назначения процесса. При первичной перегонке нефти отбирают широкие бензиновые фракции с началом кипения 40-50°С и концом кипения 180-200°С. Дальчепшая подготовка сырья для производства высокооктановых компонентов бензина [c.15]

    В качестве сырья для каталитического риформинга обычно используют бензиновые фракции первичной перегонки нефти. В сырье риформинга могут вовлекаться после глубокой очистки бензины вторичных процессов (термического крекинга, коксования, каталитического и гидрокрекинга). Фракционный состав сырья риформинга зависит от назначения процесса. Если целью процесса является получение аренов (бензола, толуола, ксилолов), то используют фраквди, содержаш,ие углеводороды Се (62—85°С), С (85—105 0) и Са (105—140 С). Если процесс проводят с целью получения высокооктанового бензина, то сырьем служит фракция 85—180°С, соответствующая углеводородам Ст—Сэ. [c.356]

    Основным назначением каталитического крекинга является получение из малоценных фракций первичной перегонки нефти высококачественного автомобильного бензина с попутпым расширением ресурсов фракций дизельного топлива и получением ценного газа — сырья для химической переработки. [c.9]

    Подготовленная к переработке нефть поступает на первичную перегонку, назначение которой — получить разлтгчные нефтяные фракции, выкипающие в заданных температурных пределах. [c.32]

    Как показано ранее, нефть представляет С06011 сложную смесь парафиновых, нафтеновых и ароматических углеводородов, различных по молекулярному весу и температуре кипения. Кроме того, в нефти содержатся сернистые, кислородные и азотистые органические соединения. Для производства многочисленных продуктов различного назначения и со специфическими свойствами применяют методы разделения нефти на фракции и группы углеводородов, а также изменения ее химического состава. Различают первичные и вторичные методы переработки нефти. К первичным относят процессы разделения нефти на фракции, когда используются ее потенциальные возможности по ассортименту, количеству и качеству получаемых продуктов и полупродуктов. Ко вторичным методам относят процессы деструктивной переработки нефти и очистки нефтепродуктов. Процессы деструктивной переработки нефти предназначены для изменения ее химического состава путем термического и каталитического воздействия. При помощи этих методов удается получить нефтепродукты заданного качества и в больших количествах, при прямой перегонке нефти. [c.198]

chem21.info