Большая Энциклопедия Нефти и Газа. Воздействие нефти на металл


Тяжелые металлы в нефти. Как с ними бороться и где применять? // Экология // Аналитика

В состав нефти и пластовых вод нефтяных месторождений входят тяжелые металлы, которые представляют собой химические элементы с атомной единицей массы более 50.

В золе нефти обнаружены Fe, Mn, Cr, Co, Ni, V, Mo, Cu, Zn, Pb, Hg, Sn и др., среди которых выделяются элементы (V, Ni, Zn и др.), попавшие в нефть из живых организмов в далеком геологическом прошлом. При этом V и Ni в некоторых видах тяжелой нефти имеют концентрации, достаточные для их промышленного извлечения. Как с ними бороться и где применять?

Тяжелые металлы нефтяного происхождения попадают в окружающую среду в процессе добычи, транспортировки и переработки нефти. Так, оценка содержания Cd, Pb, Zn и Ni на площадках буровых скважин в зависимости от концентрации в почве разлитой нефти, проведенная И.А. Лавриненко и О.В. Лавриненко в 1998 г., показала существование прямой корреляционной связи между этими показателями. По наблюдениям Т.Я. Корчиной и В.И. Корчина (2011 г.), негативное влияние нефтяных буровых установок сказывается в радиусе 2 км и более, так как содержащиеся в выхлопных газах дизельных приводов Pb, Cd и другие тяжелые металлы оседают на почву. При сжигании попутного нефтяного газа на факелах, тяжелые металлы в составе образующейся сажи также оседают и загрязняют прилегающие территории. Аналогичная неблагоприятная ситуация складывается при случайных разливах нефти и ее возгорании, что может происходить в результате механических повреждений нефтепроводов при проведении ремонтных работ или несанкционированных (криминальных) врезках на них, а также при опрокидывании железнодорожных цистерн с нефтью при маневровых работах.

Между тем тяжелые металлы представляют большую опасность для человека, в организм которого они могут поступать напрямую с вдыхаемым воздухом в условиях сжигания попутного нефтяного газа на факелах, горения разливов нефти, а также почвенной пылью и по пищевым цепям (растение-животное-человек) на территориях загрязненных нефтью. Так, исследованиями И.А. Лавриненко и О.В. Лавриненко, проведенными в 1998 г. на площадках буровых скважин (Большеземельская тундра), был показан высокий риск загрязнения тяжелыми металлами нефтяного происхождения северолюбки рыжеватой (Arctophila fulva) - кормового растения оленей и водоплавающих птиц. Миграция тяжелых металлов из загрязненной почвы в поверхностные и подземные воды также усугубляет ситуацию в связи с их поступлением в организм человека питьевой водой. Так, в работах И.Ю. Макаренковой (2007 г.) и Т.Я. Корчиной и соавторов (2010 г.) установлена прямая корреляционная связь между содержаниями в воде нефти и Hg, Zn, Pb и Cd.

Длительное воздействие тяжелых металлов на человека может проявляться в виде инициирования неоплазии, то есть образования новой ткани или опухоли в результате процессов окисления-восстановления в организме или растворения их частиц в плазме крови. Если металл способен достичь конкретного органа и внедриться в клетки так, чтобы со временем возникла достаточно высокая концентрация, то это вещество способно вызвать канцерогенный ответ. Так, например, соединения Ni индуцируют опухоли полости носа, гортани и почек, Pb увеличивают риск заболеваемости раком желудка, почек и мочевого пузыря, Cd индуцируют лейкемию, опухоли яичка и предстательной железы, шестивалентный Cr - рак полости носа, а соединения Hg - предстательной железы и почек. Однако основным органом в качестве мишени для перечисленных канцерогенных веществ, включая Zn и Fe, являются легкие, в которые они могут попасть непосредственно через вдыхаемый воздух и почвенную пыль.

Следует отметить, что если разливы нефти на почву можно ликвидировать посредством внесения в нее биопрепаратов или биокомпостов, приводящих к практически полному разложению углеводородов посредством углеводородокисляющих микроорганизмов, то проблему очистки почвы, загрязненных тяжелыми металлами нефтяного происхождения можно решить способом фитоэкстракции. Последняя состоит в посеве и выращивании на предварительно очищенной от углеводородов нефти почве специально подобранных видов сельскохозяйственных растений для извлечения тяжелых металлов корневой системой и накопления их в надземной биомассе, в последующем утилизируемой. При этом коэффициент биологического накопления тяжелых металлов растениями, как отношение содержания металлов в растении и почве, повышают посредством внесения в последнюю хелатообразующих агентов, то есть средств, ускоряющих очистку загрязненной почвы. Способ фитоэкстракции считается простым в исполнении и экономически целесообразным по сравнению с механическими и физико-химическими способами очистки почвы. Так, механические способы связаны с удалением наиболее загрязненного поверхностного слоя почвы и его размещением на свалках для дальнейшей утилизации, перемешиванием с менее загрязненными подповерхностными слоями почвы, посредством вспашки на глубину > 40 см, или его покрытием привозной чистой почвой. Физико-химические способы осуществляют путем промывки почвы специальными реагентами для извлечения из нее тяжелых металлов или ее очистки посредством воздействия на загрязненный слой постоянного электрического тока через электроды.

Особенности очистки почв, загрязненных тяжелыми металлами

Прежде всего, необходимо подобрать виды сельскохозяйственных растений, отличающиеся высокой скоростью роста, производящие большую надземную биомассу, имеющие глубоко разрастающуюся корневую систему и высокую сопротивляемость к болезням и вредителям, быть отзывчивыми к обычной агротехнике, удобными для уборки и непривлекательными для домашних и диких животных, чтобы не вызывать случаи интоксикации насыщенной тяжелыми металлами надземной биомассой при ее поедании.

Содержание тяжелых металлов в почве загрязненного участка, предназначенного для фитоэкстракции не должно вызывать у всходов выраженных фитотоксических симптомов (обесцвечивания, пигментации и пожелтения листьев, задержки роста и др.), что характеризует их устойчивость к тяжелым металлам и способность максимально поглощать последние корневой системой и перемещать их в надземную биомассу за счет потока, создаваемого испарением воды листовой поверхностью растений.

Для увеличения коэффициента биологического накопления тяжелых металлов в растениях необходимо применять хелатообразующие агенты из числа полиамиимер, этилендиаминтетрауксусную кислоту (ЭДТА), способную образовывать прочные водорастворимые внутрикомплексные соединения со многими металлами. Реакция образования такого внутрикомплексного соединения на примере взаимодействия ионов меди с двунатриевой солью ЭДТА представлена на рисунке. Хелатообразующие агенты повышают растворимость, подвижность металлов в почве, а, следовательно, их поглощение корневой системой и накопление в надземной биомассе.

При фитоэкстракции хелатообразующие агенты в виде водных растворов их солей вносят под растения в фазу достижения ими максимальной надземной биомассы, что позволяет повысить коэффициент биологического накопления тяжелых металлов растениями, а, следовательно, сократить время очистки загрязненной почвы.

Очистку почвы, загрязненной тяжелыми металлами необходимо проводить путем кратного посева и возделывания растений вплоть до достижения в почве фоновых или предельно допустимых концентраций веществ.

При этом экономически целесообразным для фитоэкстракции считается период продолжительностью 5-10 лет.

В каждом случае фитоэкстракция завершается жатвой, сбором и утилизацией загрязненной тяжелыми металлами надземной биомассы растений, так как уборка всей корневой биомассы, первоначально насыщаемой тяжелыми металлами затруднительна.

Надземная биомасса растений путем ее предварительного высушивания, озоления и последующей специальной обработки в дальнейшем может быть использована для извлечения из нее тяжелых металлов и повторного их применения в промышленности.

В целом фитоэкстракция тяжелых металлов из загрязненных почв согласно S. Dushenkov et al. (1997 г) складывается из следующих основных стадий и процессов: выращивание определенного вида сельскохозяйственного растения с применением соответствующей агротехники; внесение в почву хелатообразующего агента для увеличения растворимости и подвижности металлов; поглощение растворенных металлов корневой системой растения; транслокация растворенных металлов в надземную биомассу растения; концентрирование металлов в растении за счет испарения влаги.

Очистка почвы, загрязненной тяжелыми металлами с помощью растения горчицы

Фитоэкстракции тяжелых металлов обычно предшествует предварительное обследование участка на уровень его загрязненности, отбор почвенных образцов для проведения специального вегетационного опыта с определенными видами сельскохозяйственного растения и хелатообразующего агента, что позволяет оценить потенциал очистки загрязненной почвы. Так, в наших исследованиях на почве, загрязненной Cu и Ni (100 и 100 мг/кг) производили посев семян горчицы (Brassica juncea). Спустя 7,5 недель, по достижении горчицей максимальной надземной биомассы, в почву вносили ЭДТА в виде водного раствора натриевой соли данного вещества в дозах от 1 до 10 ммоль/кг и через 1 неделю растения срезали, высушивали и проводили анализ в биомассе содержания Cu и Ni; те же вещества определяли в почвенных пробах, отобранных до и после процедуры фитоэкстракции. Как оказалось, с увеличением дозы ЭДТА коэффициенты биологического накопления тяжелых металлов, а, следовательно, потенциал очистки загрязненной почвы возрастали относительно контроля (без внесения ЭДТА) для Cu в 2,8-43,6 раза, для Ni - 1,8-25,3 раза. Для количественной оценки потенциала фитоэкстракции были проведены расчеты периодов достижения фоновой концентрации Cu и Ni по формуле t = ln (yo/y)/k, где yo - действительная концентрация металла в почве; y - фоновая концентрация металла в почве; k - константа скорости убыли содержания металла в почве. Было установлено, что кратность посева и выращивания горчицы с применением ЭДТА значительно сокращала время очистки почвы, загрязненной тяжелыми металлами. Так, время достижения фоновых концентраций Cu (31,6 мг/кг) и Ni (63,5 мг/кг) при внесении в почву ЭДТА в дозах от 1 до 10 ммоль/кг уменьшалось относительно контроля (без внесения ЭДТА) соответственно от 2 до 2,6 и 2,6 до 3,3 раза.

В целом двукратный посев и выращивание горчицы в течение одного вегетационного сезона может в 2 раза сократить время очистки почвы, загрязненной тяжелыми металлами во всех вариантах опыта.

Таким образом, загрязнение почв тяжелыми металлами нефтяного происхождения, как весьма опасными для человека веществами, является значимой геоэкологической проблемой, требующей безотлагательного решения в регионах, связанных с добычей, транспортировкой и переработкой нефти. Наиболее приемлемым способом очистки почв, загрязненных тяжелыми металлами является фитоэкстракция, как простой в исполнении и экономически целесообразный подход по сравнению с механическими и физико-химическими способами.

Обсудить на Форуме

neftegaz.ru

Исследование воздействия магнитной обработки на свойства нефтяного сырья

Исследование воздействия магнитной обработки на свойства нефтяного сырья

 

Параметры и результаты технологических процессов нефтепереработки и нефтехимии определяются качеством поступающего на переработку углеводородного сырья, что, в свою очередь, напрямую зависит от эффективности используемых методов его подготовки и очистки. Современный этап развития химии и технологии углеводородов характеризуется прогрессирующим ухудшением свойств и качества перерабатываемых нефтей из-за увеличения обводненности, коррозионной агрессивности, содержания серы, солей и пр. В этой связи снижение влияния указанных негативных факторов на разделение и трансформации углеводородного сырья является одним из приоритетных направлений науки и техники.

В технологических процессах подготовки сырья для нефтепереработки и нефтехимии используются химические реагенты различного назначения, но в осложненных условиях традиционные химические методы и стандартные технологии во многих случаях оказываются недостаточно эффективными. Наряду с химическими используется ряд физических методов воздействия на нефть и водно-органические смеси, в том числе и обработка их магнитным полем, что позволяет в ряде случаев улучшить их свойства и облегчить разделение.

Совместное использование магнитной обработки рассмотренных нефтяных эмульсий и химических реагентов, применяемых в процессах их подготовки, позволило увеличить деэмульгирующий эффект в среднем на 15 % без увеличения расхода реагентов.

На основании лабораторных исследований и формализации априорной информации принята следующая гипотеза о механизме воздействия магнитного поля на водонефтяные эмульсии. Изначально эмульсия представляет собой субстанцию класса «нефть в воде» или «вода в нефти», причем на границах раздела фаз образуются так называемые «бронирующие оболочки», препятствующие самопроизвольному разрушению эмульсии.

Молекулы деэмульгатора, адсорбируясь на поверхности раздела фаз, вытесняют менее поверхностно-активные природные эмульгаторы. Однако, хотя пленка, образуемая деэмульгатором, обладает малой прочностью, действия сил тяжести недостаточно для обеспечения быстрого осаждения и коалесценции мелких капель. Магнитное поле вызывает поляризацию капель воды и их взаимное притяжение, что приводит к значительному ускорению коагуляции и коалесценции капель и их быстрому отстою.

Механизм действия магнитной обработки на образование АСПО, согласно принятой гипотезе, таков: в движущейся жидкости происходит разрушение агрегатов, состоящих из субмикронных ферромагнитных микрочастиц соединений железа, находящихся при концентрации 10–100 г/т в нефти и попутной воде, что приводит к резкому (в 100–1000 раз) увеличению концентрации центров кристаллизации парафинов и солей и формированию на поверхности ферромагнитных частиц пузырьков газа микронных размеров. В результате разрушения агрегатов кристаллы парафина выпадают в виде тонкодисперсной, объемной, устойчивой взвеси, а скорость роста отложений уменьшается пропорционально уменьшению средних размеров, выпавших совместно со смолами и асфальтенами в твердую фазу кристаллов парафина.

Механизм воздействия магнитного поля на процесс солеотложения, согласно принятой гипотезе, можно описать следующим образом: магнитное поле оказывает влияние на кинетику кристаллизации, обусловливающее увеличение концентрации центров кристаллизации в массе раствора, водная система выводится из равновесия, возрастает скорость образования осадков и формируется множество мелких кристаллов практически одинакового размера.

Провоцирование кристаллообразования приводит к тому, что в дальнейшем, вместо образования отложений на поверхности оборудования, взвесь образуется в объеме раствора, выносится из опасной зоны и ее можно удалять с помощью специальных устройств. Обрабатывать магнитным полем водную систему предпочтительно до начала процесса формирования кристаллов. Максимальный эффект от магнитной обработки был получен на водных системах при относительно невысоких температурах (до 70–80 0С) и повышенном содержании ионов солей (250300 мг/л и выше).

Согласно принятой гипотезе при воздействии магнитного поля на систему «металл — электролит» одновременно протекают два взаимоисключающих процесса: сдвиг потенциала коррозии в отрицательную область, что должно привести к снижению коррозионной стойкости металла; ускорение поляризуемости системы, что приводит к снижению скорости коррозии. Последнее связано с тем, что процессы гидратации ионов металла и подвода деполяризатора к поверхности металла замедляются под воздействием магнитного поля. Ускорение поляризации при магнитной обработке преобладает над процессом увеличения термодинамической нестабильности металла (сдвиг потенциала в область более отрицательных значений), в результате чего скорость коррозии замедляется.

Обработка магнитным полем осуществлялась с помощью лабораторной установки УМПЛ-1, которая позволяет поддерживать постоянное магнитное поле, а также задавать частоту (от 1 до 100 Гц), напряженность (от 0 до 40 кА/м) и форму (синусоидальная, треугольная и прямоугольная) ее изменения. В делительную воронку помещали 250 мл исследуемой жидкости. Далее открывали вентиль, и жидкость через индуктор перетекала в химический стакан. Обработка магнитным полем производилась в индукторе, подключенном к генератору установки УМПЛ-1.

Исследования воздействия магнитного поля на водонефтяные эмульсии проводились в соответствии с ASTMD-1401. Обработка эмульсии проводилась однократно путем пропускания эмульсии из делительной воронки через индуктор экспериментального стенда. Затем эмульсия перемешивалась в емкости в течениеминут и ставилась на отстой при комнатной температуре со снятием показаний степени разрушенности через 15, 30, 60 и 120 минут. Для каждого опыта брали 100 мл эмульсии.

Исследования влияния магнитного поля на образование солеотложений проводились в соответствии с методикой, разработанной в УГНТУ. Методика основана на сравнении размеров и формы кристаллов хлористого натрия, выделившихся из необработанной и обработанной магнитным полем жидкости. Для анализа отмеряли по 150 мл обработанного и необработанного магнитным полем насыщенного водного раствора соли в химические стаканы емкостью 200–300 мл и упаривали до уменьшения объема в 2 раза на электроплитке в строго идентичных термобарических условиях. Содержимое стаканов охлаждали до комнатной температуры, отфильтровывали выпавшую в осадок соль и оценивали форму и размер ее кристаллов с использованием микроскопа типа «Микмед-1–0» и сит лабораторных ЛО 251–1.

Оценка коррозионной агрессивности сред проводилась гравиметрическим методом (ГОСТ 9.502–82, ГОСТ 9.506–87), суть которого заключается в определении потери массы металлических образцов за время их пребывания в испытуемой среде. Подготовленные образцы помещались в U-образные гравиметрические ячейки с обработанной и необработанной магнитным полем исследуемой средой. При гравиметрическом методе скорость коррозии характеризуется массовым показателем Кт (г/м -ч).

 

Литература:

 

  1.             Шайдаков В. В., Князев В. Н., Инюшин Н. В., Хайдаров Ф. Р., Лаптев А. Б., Никитин Р. В. Исследования влияния магнитной обработки на водонефтяные эмульсии НПУ «Белкамнефть». — Деп. в ВИНИТИ 07.05.01, № 1178-В 2001.
  2.             Кузнецов В. С., Инюшин Н. В., Хайдаров Ф. Р., Шайдаков В. В., Лаптев А. Б., Никитин Р. В. Лабораторная установка для определения параметров магнитной обработки жидкости — УМПЛ. — Деп. в ВИНИТИ 07.05.01, № 1174-В 2001.
  3.             http://ogbus.ru/authors/Chernova/Chernova_2.pdf 

moluch.ru

Суммарное содержание металлов в нефтях

    В настоящее время установлено, что в нефтях разного происхождения присутствует более 60 элементов, из которых около 30 относятся к металлам. В нефти присутствуют - железо, магний, алюминий, медь, олово, натрий, кобальт, хром, германий, ванадий, никель, ртуть, золото и другие. Однако, содержание их менее 1 %. Среди отдельных металлов, содержание которых в нефтях превышает 10 %, доминируют V - 10 -10 % Ni - 10 -l 0 % Fe - 10 -l 0 % Zn - 10 -10 % Hg - около 10 % В - 10 -0,3 % Na, К, Са, Mg - 10 -10 %. Суммарное содержание в нефтях металлов в среднем колеблется от [c.40]     Склонность высокомолекулярных компонентов нефти к ассоциативным явлениям, т. е. возникновению связей между ними, как отмечалось выще, обусловлена характером взаимодействия составляющих их структурных звеньев, которое связано с наличием дисперсионных, индукционных и ориентационных сил. Соотношение сил составляющих энергий в первую очередь зависит от полярности высокомолекулярных соединений нефти. В системе слабополярных молекул (алканы, циклоалканы, алкано-циклоалканы) основными являются силы дисперсионного взаимодействия. С увеличением полярности, что характерно для поли-аренов, большое значение приобретает ориентационное взаимодействие. Увеличение склонности к ассоциации смол, кроме отмеченного вьиие фактора ароматичности, также зависит от содержания в них полярных функциональных групп и от суммарного содержания в смолах гетероатомов (сера, азот, кислород, металлы). [c.25]

    Установлено неблагоприятное влияние наличия металлов в нефтях на процессы нефтепереработки и эксплуатационные свойства нефтепродуктов. Извлечение некоторых элементов, в частности ванадия, из нефти стало даже промышленно важным, поскольку содержание ванадия в образцах битумов из природных высоковязких нефтей достигает 50 г/т. В нефтях разного происхождения может присутствовать до 60 элементов, из которых около половины относится к металлам. Среди отдельных металлов, содержание которых в нефтях превышает доли процентов, доминируют V - 10 -10 % № - 10 - -10 % Ре - 10- -10- % 2п - 10Hg - около 10- % Ка, К, Са, Mg - 10 -10 %. Суммарное содержание в нефтях металлов в среднем колеблется от 0,01 до 0,04% (масс.). Основная масса металлсодержащих соединений сосредоточена в смолах и ас-фал ьтенах, а углеводородные фракции содержат их в следах. Поскольку смол в нефтях и остаточных фракциях значительно больше, чем асфальтенов, то основная масса металлов все же сосредоточена в смолах. При термолитическом воздействии на нефть, например, в процессе перегонки, происходят изменения структурных характеристик смол, а также их элементного со- [c.13]

    Содержание ванадия в смолисто-асфальтеновых веществах больше, чем выше содержание серы, а никеля — чем выше содержание азота. Суммарное содержание в нефтях металлов в среднем колеблется от 0,01 до 0,04% масс., а в выделенных из них смолисто-асфальтеновых веществ иногда может достигать десятых долей процента. [c.89]

    Суммарное содержание металлов в нефтях [c.204]

    Высокомолекулярные соединения нефти (ВМСН) составляют наиболее тяжелую ее часть, которая остается после отгонки фракций, выкипающих до 350—550 °С. Эти соединения характеризуются высокими для нeфт6пpoдyктoiв значениями молекулярных масс (более 400) и значительным количеством-гетероатомов—серы, азота и кислорода, суммарное содержание которых может достигать до 5—10 мас.%. В этих веществах также концентрируется основная часть металлов (Ре, V, N1, Mg и др.), содержащихся в нефти. [c.6]

    При интерпретации данных табл. 2.27 следует учитывать, что имеющиеся экспериментальные материалы характеризуют неполные наборы микроэлементов в большинстве из изученных нефтей, поэтому фактические суммарные содержания микроэлементов почти всегда должны быть выше приведенных в таблице результатов суммирования. Тем не менее найденные величины, по-видимому, правильно передают общие направления изменений суммарного содержания металлов в нефтях в зависимости от возраста и погруженности вмещающих отложений. [c.205]

    Примечания 1. Плотность при 15 С, вязкость при 99 С. 2) Объемное. 3) Плотность битума деасфальтизации при 15 С равна 1023 кг/м . 4) Плотность битума деасфальтизации при 15 С равна 1054 кг/м . 5) При 80 °С. 6) Образец № 1 получен из смолистой высокопара-финистой нефти, № 2 — из нефти месторождения Сангачалы море, № 3 — из волгоградской нефти, № 4 — из смеси жирновской и коробков-ской. 7) Плотность 999 кг/м . 8) Гудрон западно-техасской нефти суммарное содержание металлов (никель, ванадий, медь, железо) в гудроне 58,4 млн" , в деасфальтизате 3,1 млн . 9) Гудрон канадской нефти содержание серы в гудроне 1,46 % (масс.) в деасфальтизате 0,85 % (масс.). 10) Гудрон иракской нефти кратность растворителя к сырью 9,9 1 по объему. [c.66]

    Наряду со сходством имеются и различия в молекулярной структуре масел, смол и асфальтенов. Масла состоят из высокомолекулярных углеводородов, а также в случае сернистых нефтей из сероорганических соединений, близких по строению к высокомолекулярным углеводородам. Смолы и асфальтены содержат не только углерод, водород, серу, но и кислород и азот, ванадий, никель и некоторые другие металлы. Азот концентрируется преимущественно в асфальтенах, а кислород — в смолах. Суммарное содержание гетероатомов в них достигает 10% (и более). [c.11]

    Каркас молекул смол и асфальтенов представляет собой углеродный скелет, на долю которого приходится от 78—80 до 87— 88% общей массы молекул этих высокомолекулярных неуглеводородных компонентов нефти. Смолы несколько богаче водородом, чем асфальтены, и характеризуются более высоким отношением Н/С. Суммарное содержание гетероатомов (О, 8, N) и металлов, а также их соотношение в молекулах смол и асфальтенов варьирует в широких пределах и зависит в сильной степени от химической природы нефтей. [c.39]

    В настоящее время данных для полной характеристики высокомолекулярной части нефтей, особенно неуглеводородных ее компонентов, пока еще очень мало. Между тем знание состава и свойств этой части нефти имеет решающее значение для выбора технологии и режима химической безостаточной ее переработки. Поэтому весьма важным направлением исследования высокомолекулярной части нефти является химическая инвентаризация по таким показателям, как суммарное содержание смолисто-асфальтеновых веществ и соотношение в них основных компонентов (смол и асфальтенов), содержание металлов, в первую очередь ванадия, в смолисто-асфальтеновой части. [c.108]

    Большой научный интерес и практическую актуальность, представляет изучение характера влияния химической природы сырых нефтей на элементный и компонентный составы смол и асфальтенов, на величину отношения в них С/Н и С-атомов разной химической природы (ароматических, нафтеновых, парафиновых), на суммарное содержание и количественное соотношение гетероатомов (8, О, ") и атомов металлов (V, N1 и др.), как на величину молекулярного веса, так и на другие физические характеристики. [c.108]

    Исследование смолисто-асфальтеновой части нефтей основных месторождений СССР позволило [31, 49-51] установить, что в их молекулах содержатся ароматические и нафтеновые структуры с разным числом колец, парафиновые цепи разной длины и строения, на долю которых приходится от 78 до 88% молекулярной массы этих соединений. Суммарное содержание гетероатомов (О, 5, К) и металлов, а также степень экранизации их углеводородными радикалами, зависят от природы нефти. Как структурные особенности молекул смол, так и их состав определяют полярность этих компонентов масляного сырья, что особенно важно в процессах кристаллизации твердых углеводородов из нефтяных дисперсий. [c.25]

    Содержание А. в нефтях колеблется от 1 до 20%. Элементный состав (%) С (80-86), Н (7-9Х О (2-10), S (0,5-9), N (до 2) в микрокол-вах присутствуют V и Ni (суммарное содержание 0,01 Fe, Са, Mg, Си и др. металлы, вхо- [c.211]

    При адсорбционно-хроматографическом фракционировании нефтяные ВМС так же, как и при гель-хроматографии, обмениваются металлами с поверхностью адсорбента, в результате суммарное содержание микроэлементов в выделенных продуктах становится неидентичным их концентрации в исходных веществах. Способность к обмену и связыванию различных микроэлементов смолисто-асфальтеновыми веществами должна определяться их химически.мн свойствами (функциональным составом) и, следовательно, находиться в связи с химическим типом нефти. Для выяснения характера такой связи нами изучены изменения концентраций микроэлементов в смолах и асфальтенах из западно-сибирских нефтей различных химических типов в процессе их хроматографического разделения на силикатных адсорбентах. Анализировались фракции смол и асфальтенов из нафтеновой нефти Русского месторождения (сеноман, пласт ПКз, средняя глубина залегания около 890 м), из метаново-нафтеновой нефти Советского месторождения (валанжин, БВз, [c.218]

    В золе нефтей содержание ванадия и никеля достигает 60% от суммарного количества металлов. В нефтях Урало-Поволжья концентрация ванадия в среднем составляет 39-115 мг/кг, никеля — до 14 мг/кг. Формы существования ванадия и никеля в нефтях изучены наиболее полно. [c.232]

    Ресурсы и круговорот углерода в природе. Общая масса углерода в земной коре очень значительна 3,2 10 т (табл. 18.4). Наиболее распространенные углеродсодержащие минералы — карбонаты щелочно-земельных и других металлов. Следующими за ними по суммарному содержанию углерода являются так называемые каустобиолиты. Это общее название всех горючих полезных ископаемых биогенного происхождения. Основная часть углерода каустобиолитов находится в горючих сланцах в виде керогенов — продуктов разложения биомассы. Главное горючее современной электро- и теплоэнергетики — ископаемые угли, являющиеся продуктами обуглероживания керогенов антрациты, каменные и бурые угли. Роль главного транспортного горючего играет нефть. Горючий природный газ, содержащий 80—99% СН4, — важное экологически чистое бытовое и промышленное топливо, а также сырье химической промышленности. [c.357]

    В нефтях, даже в высокосернистых, содержание сероводорода незначительно так, например, в ишимбайской нефти с суммарным содержанием серы 2,5—3% сероводорода имеется 0,02— 0,03%. Однако при переработке, особенно при крекинге, сернистых нефтей высокомолекулярные соединения серы, в первую очередь дисульфиды с открытой цепью, разлагаются (при 200— 250—350°) с образованием сероводорода. Продукты перегонки нефти могут поэтому содержать 0,7% Нг8 и более, т. е. во много раз больше, чем в исходной нефти. Это очень затрудняет переработку сернистых нефтей, так как сероводород и меркаптаны химически очень активны и ядовиты они опасны для здоровья и жизни людей они разрушают металл аппаратуры портят качества нефтепродуктов. Для очистки нефтепродуктов от сернистых соединений требуются специальные, порой сложные процессы. Для защиты аппаратуры от сернйстой коррозии принимают особые меры, что удорожает и осложняет переработку. [c.21]

    Видно, что доли порфириновых атомов V и N1 в нефтях каждого региона или месторождения быстро нарастают с уменьшением суммарного содержания металлов в нефти. Аналогичный вывод следует и из результатов работы [76], авторы которой определяли V и N1 и сумму порфиринов в нефтях Вайоминга и Венесуэлы (рис. 2.3, б, кривая 4). Это означает, что непорфири-новые соединения V и N1 в целом менее стабильны, чем нефтяные порфирины, и изменения их концентраций в нефтях в условиях недр в большей степени сопряжены с образованием или разрушением первых, нежели с трансформациями вторых. [c.198]

    Изменения в структуре углеродного скелета свидетельствуют о реакции дегидроконденсации, преимущественно за счет гексамети-леновых колец. Особенно рельефно проявляется такой характер изменения углеродного скелета в смолисто-асфальтеновых веществах в процессах высокотемпературной переработки нефти. Этим и обусловлено различие в свойствах и строении нативных асфальтенов и асфальтенов, выделенных из тяжелых нефтяных остатков, полученных на различных стадиях высокотемпературной переработки нефти. Несмотря на аналогию в строении углеродного скелета, наблюдается резкое качественное различие в элементном составе высокомолекулярных углеводородов нефти и нефтяных смол. Первые имеют чисто углеводородную природу, т. е. полностью состоят из атомов углерода и водорода, вторые относятся к высокомолекулярным неуглеводородным компонентам нефти и, кроме углерода и водорода, содержат в своем составе О, 8, N и металлы, суммарное содержание которых может достигать 10% и более. В высокомолекулярных же углеводородах лишь в случае сернистых и высокосернистых нефтей могут присутствовать более или менее значительные примеси сераорганических соединений, близких по строению углеродного скелета к высокомолекулярным углеводородам. [c.40]

    По элементарному химическому составу асфальтены близки к нефтяным смолам и отличаются от последних несколько меньшим содержанием водорода, следовательно более высоким отиогпением С И и более высоким суммарным содержанием гетероатомов (О, 3, N, металлы). Различие и сходство химического состава нефтяных смол и асфальтенов, а также более высокий (в 2—3 раза) молекулярный вес асфальтенов по сравнению со смолами делают весьма вероятным предположение, что асфальтены являются продуктами конденсации смол. Полное представление об элементарном составе асфальтенов, выделенпых из различных нефтей, дают данные, приведенные в табл. 95 для нефтей зарубежных месторождений [3] н в табл. 96 для нефтей советских месторождений по результатам наших исследований. [c.362]

    Распределение установок, перерабатывающих остаточное сырье, по регионам зависит от потребления котельного топлива и наличия установок коксования. Примерно 60 % установок каталитического крекинга остаточного сырья работает на мазуге. Остальные на смесях (в основном с мазутом). Без предварительной подготовки напрямую перерабатываются мазута с коксуемостью по Кандрадсону не выше 2 - 4 % и содержанием металлов до 5 г/т. Однако основная часть мазутов имеет коксуемость до 10 - 15 %. Длительность пробега установок каталитического крекинга составляет от 2 до 4 лет, в отдельных случаях достигает 6 лет. Процесс энергоемкий. Суммарное потребление энергии составляет 4 - 7 % от перерабатываемого сырья, а с учетом сжигаемого кокса - около 40 % от нефти, идущей на энергетические нужды. Потребление энергии распределяется следующем образом электроэнергия - 18 % пар - 46 % топливо технологическое - 36 %. [c.19]

    В целях повышения выхода и улучшения состава синтетической нефти, а также снижения выбросов SO2 предлагается включить в состав комплекса Syn rude процесс гидрокрекинга части выделенного из породы битума. Получаемый экстрак-,цией битум содержит около 1,5% (масс.) твердых частиц и 300 мг/кг металлов и его нельзя использовать в качестве сырья гидрокрекинга, проводимого на стационарном катализаторе. Поэтому предлагается процесс осуществлять в реакторе с псевдоожиженным слоем катализатора, в котором возможны непрерывные отвод и подача последнего. В качестве наиболее оптимального варианта рекомендуется гидрокрекинг с относительно низкой степенью конверсии битума (55—65%). При этом остаток гидрокрекинга должен направляться на существующую установку Флексикокинг в смеси с битумом, что обеспечивает существенное снижение суммарных выбросов диоксида серы и понижает содержание серы в коксе [ПО]. [c.104]

    В высококипящих фракциях нефтей содержатся в значите 1ьных количествах высокомолекулярные гетероатомные соединения гибридной структуры, включающие в состав молекулы азот, серу, кислород, а также некоторые металлы. Выделить их в виде индивидуальных соединений и идентифицировать современными методами не удается. Поэтому их относят суммарно к группе смолисто-асфальтеновых веществ (САВ). Они не представляют собой определенный класс органических соединений. Содержание их в нефтях колеблется в значительных пределах от десятых долей процента (марковская нефть) до 50 % масс. Резкой границы в составе и свойствах при переходе от высокомолекулярных полициклических углеводородов к САВ не существует. [c.14]

    Новейшие исследования не ограничиваются суммарным определением содержания серы в нефти. Не говоря уже о глубоком научном интересе, который нредставляет ближайшее изучение вопроса о тех формах (соединениях), в которых сера содержится в нефти и ее дестиллатах, исследование этого вопроса представляет также серьезный практический интерес. В самом деле, не все сернистые соединения одинаково активны к различным металлам не все они одинаково относятся к различным реагентам. Отсюда понятно, что ближайшее определение химической природы сернистых соединений данной нефти может оказаться важным при выборе оборудования для ее переработки (коррозия), при подборе надлежащих методов ее очистки и т. п. Отсюда нрактическое значение, которое может представлять анализ нефти и ее дестиллатов на содержание в ней различных типов сернистых соединений. [c.239]

chem21.info

Степень - коррозионное воздействие - Большая Энциклопедия Нефти и Газа, статья, страница 1

Степень - коррозионное воздействие

Cтраница 1

Степень коррозионного воздействия этих солей на бетоны зависит от их концентрации, рН, от химического состава вяжущего и компонентов бетона. Кислые соли являются агрессивными по отношению к затвердевшему цементному камню в бетоне, всегда содержащему значительные количества извести. Их действие на бетон рассматривается в IV части.  [1]

Степень коррозионного воздействия бензина на металлы зависит от содержащихся в нем таких примесей, как сернистые и кислородные соединения, водорастворимые кислоты и щелочи. Водорастворимые кислоты и щелочи не являются постоянными примесями в бензине. Следы щелочи обнаруживаются в нем в результате недостаточно тщательной промывки бензина после процесса защелачивания. Водорастворимые кислоты и щелочи могут попасть в бензин также из плохо очищенной тары, из цистерн и трубопроводов. Кислородные соединения являются постоянными примесями бензина и проявляются в нем как в процессе нефтепереработки, так и при его хранении и транспортировке.  [2]

Степень коррозионного воздействия тяжелой фазы на материал сосуда однозначно не установлена. Имеются отдельные экспериментальные - данные, свидетельствующие о возможном каталитическом влиянии силикатов на коррозионный процесс. В любом случае тяжелая фаза содержит повышенный процент щелочи по отношению к номинальной концентрации технологического раствора. Косвенным подтверждением повышения щелочности в нижней части сосуда в цикле может служить анализ отклонения фактической р - V - Т диаграммы цикла от расчетной.  [3]

Характер и степень коррозионного воздействия добываемой из скважин жидкости на подземное и наземное оборудование промыслов зависят не только от природы нефти и ее физико-химических свойств, но и от условий залегания нефти в залежи, от способа разработки и эксплуатации нефтяных месторождений, от применяемой техники и технологии добычи, сбора и транспорта нефти на промыслах, а также от периода разработки, в котором находится эксплуатируемое месторождение.  [4]

Антикоррозионные свойства характеризуют степень коррозионного воздействия бензина на детали системы питания и двигателя.  [5]

Коррозионные свойства характеризуют степень коррозионного воздействия бензина на детали системы питания и двигателя.  [6]

Изучение характера и степени коррозионного воздействия технологической среды на металл оборудования и его сварные соединения осуществляется комплексно с учетом характера и вида его коррозионного поражения.  [7]

Аналогичные испытания применяют также для определения степени коррозионного воздействия масел на бронзу.  [8]

Внешняя поверхность обсадной колонны с поврежденным цементным покрытием или без покрытия может подвергнуться обычной электрохимической коррозии под воздействием агрессивного электролита, поступающего к трубе из того или иного геологического пласта. Степень коррозионного воздействия этого электролита на металл зависит от его состава: минерализации, рН, содержания сероводорода, ССЬ или кислорода, жизнедеятельности бактерий, температуры. Если обсадная колонна собрана на муфтах, возможно протекание так называемой щелевой коррозии, когда открытая часть муфты является катодом, а скрытая под муфтой резьбовая часть - анодом, последняя быстро разрушается. Аналогичный характер может приобрести коррозия трубы, на которой имеется участок с цементным покрытием и без него.  [9]

При пуске и останове барабанных котлов наибольшей коррозии подвержены пароперегреватель-ные поверхности. Степень коррозионного воздействия зависит от несовершенства консервации тракта.  [10]

Известно, что воздействие сероводорода проявляется тем сильнее, чем выше прочностные характеристики металла - твердость, пределы текучести и прочности. Механические напряжения играют большую роль в процессе коррозионного растрескивания, стимулируя локальное электрохимическое растворение металла, и, как следствие, зарождение и развитие трещин. Степень коррозионного воздействия зависит от соотношения величины приложенных напряжений к пределу текучести.  [11]

По характеру и степени коррозионного воздействия на образцы условия при испытаниях отличались от тех условий, в которых эксплуатируется тампонажный камень.  [12]

Кроме того, повышенное содержание в нефти азотистых соединений снижает коррозионную активность нефти. Содержание агрессивных компонентов в нефти и в попутном нефтяном газе месторождений Оренбургской области, влияющих на коррозию нефтегазопромыслового оборудования, приведено в табл. 10.3. Видно, что нефти в основном являются высокосернистыми и содержат значительное количество сероводорода и диоксида углерода. Кроме состава и физико-химических свойств нефти на характер и степень коррозионного воздействия также влияют условия залегания нефти в залежи, системы и стадия разработки и способы эксплуатации скважин.  [13]

Анализ исследований, выполненных в нашей стране и за рубежом, позволяет отметить следующие характерные особенности воздействия сероводорода на металлы. Воздействие сероводорода проявляется тем сильнее, чем выше прочностные характеристики металла - твердость, предел текучести и предел прочности. Механические напряжения играют большую роль в процессе коррозионного растрескивания, стимулируя электрохимическое локальное растворение металла, и, как следствие, зарождение и развитие трещин. Степень коррозионного воздействия зависит от отношения приложенного напряжения к пределу текучести.  [14]

Гидравлический удар всегда сопровождается характерным шумом и вибрацией трубопровода. Если после этого внимательно обследовать внутреннюю поверхность труб, можно обнаружить типичные признаки начала разрушения материала от перенапряжения в тангенциальном направлении. На внутреннем защитном слое трубы появляются продольные трещины, открывающие коррозионным средам доступ к конструкционному слою. Затем в зависимости от степени коррозионного воздействия транспортируемой среды стенки трубы постепенно разрушаются, и при повторном гидравлическом ударе трубопровод выходит из строя.  [15]

Страницы:      1

www.ngpedia.ru


Смотрите также