Вытеснение нефти из трещиновато-пористого пласта. Вытеснение нефти из пласта


Механизмы вытеснения нефти из пласта. — КиберПедия

Нефтеотдача при вытеснении нефти водой определяется взаимодействием гидродинамических и капиллярных сил. Отбор жидкости из добывающих скважин приводит к тому, что давление в нефтенасыщенной части пласта становится ниже, чем в водоносной. Под действием разницы давлений контурная или внедряется в нефтенасыщенные поры пласта и вытесняет из них нефть в сторону добывающих скважин. По мере дальнейшего отбора нефти вода продвигается к центру залежи, охватывая все большие и большие объемы пласта, происходит стягивание контура нефтеносности. Вследствие действия капиллярных сил и неоднородности коллектора вытеснение нефти водой не носит поршневого характера. Вода постепенно замещает нефть в пласте и поэтому в нем формируются несколько зон с различной насыщенностью порового пространства (рис. 4.2). Рис. 4.2. Распределение насыщенности в пласте при вытеснении нефти водой. sсв - насыщенность связанной водой; sф - водонасыщенность на условном контуре вытеснения; sк - водонасыщенность на начальном контуре нефтеносности В зоне I, еще не охваченной заводнением, сохраняется начальная насыщенность коллектора. Часть порового пространства занимает неподвижная связанная вода, а в остальном объеме движется нефть. В зоне П под действием гидродинамических сил происходит замещение основного объема нефти в поровом пространстве на воду. Насыщенность резко возрастает от до насыщенности на фронте вытеснения . В этой зоне из порового пространства может быть вытеснено до 70-80 % нефти. В зоне III насыщенность меняется начительно медленнее. Здесь происходит доотмыв оставшейся нефти и движется в основном вода. Даже при длительной промывке порового пространства водой в нем остается некоторое количество нефти, удерживаемой капиллярными и поверхностными силами Механизм вытеснения нефти газом, находящимся в газовой шапке, во многом сходен с вытеснением нефти водой. Но из-за большого различия в вязкости газа и нефти нефтенасыщенность на фронте вытеснения снижается менее чем на 15 %. При газонасыщенности около 35 % в пласте движется только газ. Поэтому при газонапорном режиме коэффициент нефтеотдачи обычно невысок Однако при высокой проницаемости пласта при большом его наклоне, малых темпах отбора нефти, когда благоприятны условия для гравитационного разделения нефти и газа, конечная нефтеотдача может достигать высоких значении, примерно 50-60 %. При режиме растворенного газа механизм вытеснения нефти из пласта представляется следующим образом. После снижения пластового давления ниже давления насыщения нефти газом в пористой среде появляются отдельные пузырьки свободного газа. По мере дальнейшего снижения давления объем, занимаемый в пористой среде газом, увеличивается за счет расширения 'пузырьков и продолжающегося выделения газа из нефти. Свободный газ вытесняет из пористой среды нефть в том объеме, который занимает сам Такой процесс продолжается до тех пор, пока некоторые поровые каналы не окажутся полностью газонасыщенными. С этого момента эффективность вытеснения нефти газом быстро снижается. Газ, обладающий малой вязкостью и, соответственно, большой подвижностью в пористой среде, опережая нефть, движется к скважинам в сторону пониженного давления не совершая работы по вытеснению нефти. Неэффективное расходование энергии растворенного газа и объясняет низкие значения коэффициента нефтеотдачи при режиме растворенного газа.

 

69. Рассказать принцип сейсмической съемки, что получают в лабораторных условиях по результатам съемки. Исходные данных для составления проектных документов на бурение структуры Как располагают первые скважины.

 

Сейсмическая разведка (сейсморазведка) – это геофизический метод исследования строения земной коры, основанный на изучении распространения упругих волн, возбужденных искусственно с помощью взрывов или ударов. Горные породы различаются по упругим свойствам и поэтому в них скорости распространения упругих волн различны. На границах слоев, где скорости меняются, могут образоваться отраженные, преломленные, рефрагированные, дифрагированные и другие волны, регистрируя которые на земной поверхности, можно получить информацию о скоростном разрезе, а по нему судить о геологическом строении.

В сейсморазведке различают два основных метода: метод отраженных волн (МОВ) и метод преломленных волн (МПВ).

Методы сейсморазведки различаются по типу используемых полезных волн, по стадии геологоразведочного процесса, по решаемым задачам, по способу получения данных, по размерности, по типу источника колебаний и частоте колебаний целевых волн.

По типу используемых волн выделяются:

Метод отраженных волн (МОВ)

Основан на выделении волн, однократно-отраженных от целевой геологической границы. Наиболее востребованный метод сейсморазведки[3], позволяющий изучать геологический разрез с детальностью до 0,5 % от глубины залегания границы.Используется в сочетании с методикой многократных перекрытий, в которой для каждой точки границы регистрируется большое количество сейсмических трасс. Избыточная информация суммируется по признаку общей средней или глубинной точки (ОСТ или ОГТ). Метод общей глубинной точки значительно расширяет возможности МОВ и применяется в большинстве сейсморазведочных работ.

Метод преломленных волн (МПВ)

Ориентирован на преломленные волны, которые образуются при падении волны на границу двух пластов под определенным углом. При этом образуется скользящая волна, распространяющая со скоростью нижележащего пласта. МПВ используется только для решения специальных задач из-за существенных ограничений метода.

 

В основе сейсмических методов лежит возбуждение упругих волн при помощи технического устройства комплекса устройств — источника. Источник создаёт в толще горных пород избыточное давление, которое компенсируется средой в течение некоторого времени. В процессе компенсации связанные частицы пород совершают периодические колебания, передаваемые в глубь земли упругими волнами. Важнейшим свойством волны является её скорость, зависящая от литологического состава, состояния горных пород (трещиноватости, выветрелости и т. д.), возраста, глубины залегания.

Распространяясь в объёме горных пород, упругие волны попадают на границы слоёв с различными упругими свойствами, изменяют направление, углы лучей и амплитуду, образуются новые волны. На пути следования волн размещаются пункты приёма, где при помощи сейсмоприемников принимаются колебания частиц и преобразуются в электрический сигнал.

Пункты приёма, применяемые для регистрации волн от одного пункта возбуждения(источника) образуют расстановку. В зависимости от размерности сейсморазведки расстановки имеют форму прямой линии (2D сейсморазведка) или блока параллельных приёмных линий (3D сейсморазведка). Графики записанных колебаний (трассы) группируются в сейсмограммы и анализируются для нахождения свойств волн.

Из полученных сейсмограмм извлекается геолого-геофизическая информация о сейсмогеологических границах. Наиболее эффективна сейсморазведка при изучении осадочного чехла древних платформ, поскольку его горизонтально-слоистое строение наиболее просто находится по сейсмическим данным. С увеличением наклона целевых геологических границ надежность получаемой сейсморазведкой информации падает.

 

Получаемые в процессе полевых работ сейсмограммы содержат значительную долю нежелательных волн-помех и мешающих колебаний, а полезные волны неудобны для интерпретации. Поэтому первичные сейсмограммы обрабатываются с использованием самой современной компьютерной техники. В результате выполнения процедур обработки сейсмограммы преобразуются во временной или глубинный разрез — материал для геологического толкования. По известным признакам на полученных разрезах выделяются аномальные участки, с которыми связываются скопления полезных ископаемых.

 

70. В чем заключается различие в расположении разведочных скважин на газовых месторождениях по сравнению с нефтяными. Основное свойство газа, что отличает разработку газовых месторождений от нефтяных.

 

Особенности разработки газовых месторождений газовых месторождений обусловлены отличием физических свойств газа от соответствующих свойств нефти: намного меньшими вязкостью и плотностью и значительной сжимаемостью.

Добытую нефть перед переработкой ее на заводах можно в случае необходимости длительное время хранить в емкостях, расположенных в районах добычи нефти, на трассах нефтепроводов и непосредственно на заводах. Извлеченный на поверхность газ следует немедленно направлять в магистральный газопровод или местным потребителям.

Следовательно, в большинстве случаев основная особенность разработки крупных газовых месторождений заключается в неразрывной связи всех элементов в системе пласт — скважина — газосборные сети на промысле — магистральный газопровод — потребители.

Как и для нефтяных месторождений, в основу рациональной разработки газового месторождения положен принцип получения заданной добычи газа при оптимальных технико-экономических показателях и соблюдении условий охраны недр. Исходя из этого принципа, при проектировании определяют темп разработки месторождения во времени, общий срок раз­работки, число скважин и схему их размещения на площади.

Существенное влияние на выбор числа скважин для каждого конкретного газового месторождения оказывает диаметр скважин. Чем больше ее диаметр, тем больше может быть дебит, меньше потери энергии на трение в стволе скважины. Рост дебита скважин обеспечивает уменьшение их числа, необходимого для получения заданной добычи газа. Вместе с тем увеличение диаметра скважин приводит к усложнению и замедлению бурения, большой затрате металла. Поэтому при проектировании разработки газовых месторождений очень важно выбрать наиболее оптимальный диаметр скважин. Схему размещения скважин выбирают в зависимости от формы залегания залежи газа. В случае полосообразной залежи скважины располагают в виде одной, двух или трех прямолинейных цепочек, параллельных продольной оси залежи, при круговой залежи — кольцевыми батареями или же равномерно по всей площади залежи.

Коэффициент газоотдачи газовых пластов, как правило, выше коэффициента нефтеотдачи. В отличие от нефти газ слабо взаимодействует с поверхностью пористой среды, обладает незначительной вязкостью (в 100 раз и более меньшей, чем вязкость легких нефтей).

Вследствие большой упругости сжатый газ всегда обладает запасом энергии, необходимой для фильтрации в пористой среде. При этом пластовое давление может уменьшиться до значений, близких к атмосферному. Поэтому газоотдача газовых залежей может теоретически достигать высоких значений — 90 — 95 % и более. Например, Бенгойское месторождение в Чечне по состоянию на 2000 г. выработано на 98 %. Однако следует учитывать, что на газоотдачу влияет множество факторов и ее величина практически бывает ниже указанных значений.

Основной фактор, влияющий на величину газоотдачи — остаточное давление в залежи на конечной стадии ее разработки. Естественно, что наибольшая газоотдача газовых пластов может быть достигнута при снижении пластового давления до возможно минимального значения, при котором устьевые давления в скважинах будут близки или даже ниже атмосферного (отбор газа из скважин под вакуумом). Однако при этих условиях дебиты скважин становятся крайне низки­ми вследствие небольших перепадов давления (рил - рзаб). Поэтому, исходя из технико-экономических соображений, раз­работку газовой залежи практически прекращают при давле­нии на устьях скважин, больших атмосферного. Конечный коэффициент газоотдачи при расчетах обычно принимают равным 0,7 —0,8.

 

 

 

71. Рассказать в чем заключаются геохимические методы. Газовый метод. Микробиологический метод.

 

Прогноз нефтегазоносности ловушек - главная первоначальная задача - с появлением газового каротажа дополнился задачей оценки продуктивности отдельных интервалов разрезов.

В настоящее время выделяют следующие геохимические методы поисков нефти и газа:

- газогеохимический (газовый),

- битуминологический,

- гидрогеохимический,

- литогеохимический,

- биогеохимический.

Каждый из названных методов характеризуется определенным набором используемых информационных показателей и применяется на соответствующих стадиях поисков. Общий экономический эффект от рекомендаций по результатам применения геохимических методов за последнее время значительно превышает расходы на проведение этих работ.

Газовый метод - основной в комплексе поисковых геохимических исследований, включающий газовую, газокерновую, водногазовую, снежногазовую, атмогеохимическую съемки и газовый каротаж. Газогеохимический метод может применяться в сочетании с другими геохимическими (а также геофизическими) методами на всех стадиях поисковых работ. Комплексирование методов с учетом различных природных условий показало наибольшую эффективность.

В последние годы получили развитие и геохимические методы поисков морских месторождений нефти и газа, имеющие существенную специфику. Важность этого направления совершенно ясна.

Таким образом, в настоящее время мы располагаем большим арсеналом геохимических поисковых методов, которые, несмотря на ряд теоретических и технических пробелов, достаточно зарекомендовали себя на практике.

Очень важно, что геохимические методы могут сыграть особенно существенную роль при поисках (иногда даже и при разведке) залежей УВ в неантиклинальных ловушках, значение которых со временем все более возрастает (становится даже превалирующим).

Значение геохимического каротажа в случае неэффективности геофизических скважинных исследований получило практически всеобщее признание.

Несмотря на все это, геохимические методы крайне ограниченно используются при поисках нефти и газа. Особенно слабо применяются перспективные гидро-, био-, атмогеохимические и некоторые другие методы. Практически отсутствует комплексирование геохимических исследований с геофизическими работами, хотя необходимость его, в том числе комплексной интерпретации результатов, признается всеми.

Важное значение для совершенствования и повышения эффективности геохимических исследований при поисках нефти и газа имеет ликвидация острого дефицита квалифицированных специаяистов-геохимиков.

Пока еще не создан комплекс технических средств, обеспечивающих все звенья геохимических работ. В качестве одной из важнейших задач стоят разработка и внедрение технических средств и технологий, позволяющих с высокой эффективностью вести геохимические работы, так как до сих пор с конструированием и изготовлением уже созданной геохимической техники дело обстоит крайне плохо.

Совершенно очевидно, что необходима специальная организация (фирма), которая должна сосредоточить основные работы по развитию и широкому практическому применению геохимических методов при поисках и разведке залежей нефти и газа.

Необходимо также повысить материальную заинтересованность работников поисково-разведочных организаций (рабочих, бурильщиков, инженерно-технического персонала и руководства) в сокращении объема дорогостоящего бурения за счет повышения эффективности прогнозирования нефтегазоносности недр.

 

Геохимические методы – это методы обнаружения скоплений нефти и газа без бурения скважин. Как известно, нефтяные и газовые скопления залегают, в основном, на глубинах свыше 500-800 м. На поверхности Земли они могут обнаруживать себя в виде газовых эманаций, проникающих через толщи вышележащих пород, и естественных источников нефти, просачивающейся по зонам трещин и разломов.

Геохимическая Съемка - составление геохимических карт на основе геохимического опробования территории по определенной системе; густота отбора проб при геохимической съемке зависит от ее детальности (заданного масштаба)

Геологические методы прямых поисков. Выделение метана в виде пузырьков и струй в наземных водоемах (реки, озера) или в виде грязе-газо-водяных выбросов и вулканов являются прямыми показателями газоносности недр. Пленки и струи нефти на поверхности воды водных бассейнов, большие и малые нефтяные лужи и озера в понижении рельефа, высачивание нефти в виде источников на склонах гор и речных долин, а также выходы нефтеносных горных пород (известняков, песчаников), битумов и асфальтов на дневной поверхности являются прямыми признаками нефтеносности недр на данной территории. Все эти газо- нефтепроявления на поверхности воды и земли выявляются и изучаются в процессе геологической съемки наземными геологическими наблюдениями.

К числу методов прямых поисков нефти и газа относятся также специальные геохимические и геофизические методы поисков с отбором проб из горных пород, подземных вод.

К геохимическим методам прямых поисковнефти и газа относится, в частности, газовая съемка. При этом производится отбор пробы воздуха, находящегося в грунтах непосредственно под земной поверхностью. Для отбора проб предварительно проходятся неглубокие скважины (1-2 м.) или закопушки, шурфы по определенной сетке. Отобранный воздух анализируется в химической лаборатории. Наличие в нем метана и других углеводородов в аномальных количествах является основанием для предположения о наличии в недрах исследуемой территории месторождений нефти и газа.

В условиях Западной Сибири с целью поисков месторождений нефти и газа используется метод геохимической съемки с отбором проб из снежного покрова. Современные методы химического анализа позволяют выявлять в этих пробах углеводороды высокооктанового ряда, миграция которых происходит из глубины по микротрещинам и порам горных пород (А.В.Рыльков, В.А.Гущин и др., 1996). Результаты съемки увязываются с данными сейсморазведки района исследований и используются для прогноза залежей углеводородов.

К геофизическим методам прямых поисковотносятся высокоточные магнитометрические, гравиметрические, электроразведочные, сейсмические и другие методы. Все они основаны на использовании аномальных физических свойств нефтегазоносных скоплений по сравнению содержа свойствами окружающих их водонасыщенных толщ (горных пород). Нефти и газа не магниты, не проводят электрический ток, обладают весьма низкой плотностью и вязкостью. Однако аномалии, вызываемые залежами нефти и газа даже крупных размеров, незначительные и в большинстве случаев не обнаруживаются современными геофизическими приборами. Работы по усовершенствованию прямых методов поиска нефти и газа продолжаются.

 

cyberpedia.su

Вытеснение нефти из трещиновато-пористого пласта — КиберПедия

В тех случаях, когда пористый коллектор нефти является гидрофильным, при контакте воды с этим коллектором происходит капиллярная пропитка. Если пористые блоки хорошо смачиваются водой, то при закачке в трещиновато-пористый пласт воды она вытесняет нефть из трещин, а из блоков породы в трещины поступает нефть вытесненная водой при капиллярной пропитке. Процесс капиллярной пропитки происходит медленнее, чем прямоточной.

Экспериментальные данные показывают, что скорость капиллярного впитывания воды (расход воды, впитывающейся в породу в единицу времени), равна расходу нефти, выходящей из породы. Будем предполагать, исходя из чисто практических соображений, что процесс капиллярной пропитки не продолжается бесконечно долго.

В трещиновато-пористом пласте процессом капиллярной пропитки охватываются не одновременно все блоки пласта.

Многие пласты, сложенные песчаниками и известняками подвергают заводнению, и во многих случаях оно проходит успешно – резкого обводнения скважин не происходит. Это указывает на то, что размер зоны капиллярной пропитки в таких пластах мал по сравнению с расстояниями между скважинами и с размером залежи в целом, и поэтому при узкой зоне капиллярной пропитки заводнение трещиновато-пористого пласта будет мало отличаться от «поршневого» вытеснения. Если же размер зоны капиллярного впитывания велик и превышает принятые на месторождении расстояния между скважинами или размер залежи, то вскоре в процессе заводнения будет наблюдаться сильное обводнение скважин. В таких случаях можно говорить, что заводнение пласта оказалось неэффективным.

Конечно, в реальных пластах вытеснение нефти водой из блоков происходит не только за счет противоточной капиллярной пропитки, но и под действием градиентов давления в трещинах.

Исследования фактической разработки пластов показывают, что скорость капиллярной пропитки пород, являющаяся сама по себе невысокой, может еще существенно снижаться из-за наличия прослоев очень малой проницаемости на контакте между пропластками или из-за ухудшения проницаемости на поверхности пористых блоков в трещиновато-пористых пластах. В этом случае, естественно, размер зоны капиллярной пропитки может существенно превышать размеры залежи, так что вскоре после начала заводнения вся площадь залежи будет обводнена, что, в конечном счете, приведет к добыче вместе с нефтью больших количеств воды.

Для ускорения капиллярной пропитки блоков и литологических неоднородностей может быть применен упруго-капиллярный циклический способ добычи нефти. Практическое осуществление этого способа заключается в периодическом изменении давления или расхода жидкости на границах пласта, приводящем к периодическому изменению этих параметров на контакте высокопроницаемых и низко проницаемых объектов пласта (прослоев, линз, блоков и т. д.). Во время цикла повышения давления нефть, находящаяся в пористых блоках, линзах или прослоях, сжимается и в них входит вода. При цикле же понижения давления содержимое пласта (нефть и вода) расширяется, но вода удерживается капиллярными силами в тех неоднородностях, в которые она проникла, а нефть выходит из них.

В механизме упруго-капиллярного циклического способа добычи нефти есть два эффекта, от которых зависит результативность этого способа. Один из эффектов заключается в ускорении внедрения воды в не охваченные водой неоднородности пласта за счет увеличения в среднем перепада давления между ними. Второй эффект состоит в капиллярном удержании воды в неоднородностях.

Согласно экспериментальным данным, весь процесс противоточной капиллярной пропитки происходит в 50 раз более медленно, чем процесс обмена жидкостью между блоками и трещинами за счет циклического воздействия при условии полного удержания в блоках проникшей в них воды.

Однако, недостаточно только «внедрить» воду в неоднородности – важно, чтобы в части цикла, когда давление снижается, вода могла удержаться в неоднородностях ка­пиллярными силами и из пород выходила нефть.

Экспериментальными исследованиями удержания воды в неоднородностях при циклическом воздействии было показано, что время, необходимое для внедрения воды в неоднородность и удержании там примерно равно времени, затрачиваемому на противоточную или прямоточную капиллярную пропитку данной неоднородности при хорошей связи данной неоднородности с остальным пластом. Циклическое воздействие позволяет ускорить «подачу» воды в неоднородность и извлечение из нее нефти, если данная неоднородность отделена от остального пласта слоем плохой проницаемости.

 

cyberpedia.su

Механизмы вытеснения нефти из пласта.

Поиск Лекций

 

Нефтеотдача при вытеснении нефти водой определяется взаимодействием гидродинамических и капиллярных сил. Отбор жидкости из добывающих скважин приводит к тому, что давление в нефтенасыщенной части пласта становится ниже, чем в водоносной. Под действием разницы давлений контурная или внедряется в нефтенасыщенные поры пласта и вытесняет из них нефть в сторону добывающих скважин. По мере дальнейшего отбора нефти вода продвигается к центру залежи, охватывая все большие и большие объемы пласта, происходит стягивание контура нефтеносности. Вследствие действия капиллярных сил и неоднородности коллектора вытеснение нефти водой не носит поршневого характера. Вода постепенно замещает нефть в пласте и поэтому в нем формируются несколько зон с различной насыщенностью порового пространства (рис. 4.2).

Рис. 4.2. Распределение насыщенности в пласте при вытеснении нефти водой. sсв - насыщенность связанной водой; sф - водонасыщенность на условном контуре вытеснения; sк - водонасыщенность на начальном контуре нефтеносности

В зоне I, еще не охваченной заводнением, сохраняется начальная насыщенность коллектора. Часть порового пространства занимает неподвижная связанная вода, а в остальном объеме движется нефть. В зоне П под действием гидродинамических сил происходит замещение основного объема нефти в поровом пространстве на воду. Насыщенность резко возрастает от до насыщенности на фронте вытеснения . В этой зоне из порового пространства может быть вытеснено до 70-80 % нефти. В зоне III насыщенность меняется начительно медленнее. Здесь происходит доотмыв оставшейся нефти и движется в основном вода. Даже при длительной промывке порового пространства водой в нем остается некоторое количество нефти, удерживаемой капиллярными и поверхностными силами

Механизм вытеснения нефти газом, находящимся в газовой шапке, во многом сходен с вытеснением нефти водой. Но из-за большого различия в вязкости газа и нефти нефтенасыщенность на фронте вытеснения снижается менее чем на 15 %.При газонасыщенности около 35 % в пласте движется только газ. Поэтому при газонапорном режиме коэффициент нефтеотдачи обычно невысок Однако при высокой проницаемости пласта при большом его наклоне, малых темпах отбора нефти, когда благоприятны условия для гравитационного разделения нефти и газа, конечная нефтеотдача может достигать высоких значении, примерно 50-60 %. При режиме растворенного газа механизм вытеснения нефти из пласта представляется следующим образом. После снижения пластового давления ниже давления насыщения нефти газом в пористой среде появляются отдельные пузырьки свободного газа. По мере дальнейшего снижения давления объем, занимаемый в пористой среде газом, увеличивается за счет расширения 'пузырьков и продолжающегося выделения газа из нефти. Свободный газ вытесняет из пористой среды нефть в том объеме, который занимает сам Такой процесс продолжается до тех пор, пока некоторые поровые каналы не окажутся полностью газонасыщенными. С этого момента эффективность вытеснения нефти газом быстро снижается. Газ, обладающий малой вязкостью и, соответственно, большой подвижностью в пористой среде, опережая нефть, движется к скважинам в сторону пониженного давления не совершая работы по вытеснению нефти. Неэффективное расходование энергии растворенного газа и объясняет низкие значения коэффициента нефтеотдачи при режиме растворенного газа.

 



poisk-ru.ru

ТЕХНОЛОГИЯ ВЫТЕСНЕНИЯ НЕФТИ ИЗ ПЛАСТОВ ПРИ ВОДОГАЗОВОМ ВОЗДЕЙСТВИИ

Метод заводнения с газоводяными смесями представляет собой сочетание двух процессов: воздействия ГВД и заводнения, обеспечивающих более полное вытеснение нефти из пористой среды и высокий охват пласта. По типу применяемого газа, его взаимодействия с пластовой нефтью используются газы трех типов: сухой углеводородный с содержанием метана < 90 %; обогащенный или жирный углеводородный, с содержанием метана >90 % и кислые СО2Н2S, a также возможна комбинация кислых газов с углеводородами.

По технологии закачки воды и газа различают три разновидности: последовательная закачка, когда вслед за закачкой отрочки газа закачивается вода или наоборот, за оторочкой воды закачивается газ; попеременная, когда в пласт закачиваются чередующиеся оторочки небольшого размера (5% и менее от начального нефтенасыщенного объема пор пласта) воды и газа; совместная, когда газ и воду закачивают в каждую нагнетательную скважину совместно в разных соотношениях по объему. Сущность метода повышения нефтеотдачи пластов при сочетании закачки воды и газа высокого давления заключается в получении высокого охвата пластов, достигаемого при заводнении и высокой вытесняющей способностью углеводородного газа.

Исходя из современных представлений о процессах вытеснения нефти, выделяются три модификации водогазового воздействия:

  1. Водогазовая репрессия.
  2. Водогазовое воздействие в режиме ограниченной растворимости закачиваемого газа и пластовой нефти.
  3. Водогазовое воздействие в режиме смешивающегося вытеснения.

Режим газовой репрессии характеризуется отсутствием массообмена между жидкой и газовой фазами. Вытеснение осуществляется под действием гидродинамических сил при наличии области двухфазного потока. Коэффициент вытеснения нефти газом, как правило, ниже коэффициента вытеснения водой. Режим ограниченной взаимной растворимости характеризуется массобменом между жидкой и газовой фазами, в результате чего образуется переходная зона. Состав и свойства жидкой и газообразной фаз в переходной зоне изменяется по длине, однако существует четкое разграничение между ними из-за двухфазного потока. Коэффициент вытеснения при этом режиме выше коэффициента вытеснения при газовой репрессии и может превышать коэффициент вытеснения при заводнении.

Кроме того, на эффективность водогазового воздействия большое влияние оказывает гидрофильность и гидрофобность породы [1, c. 202].

В гидрофильных пористых средах давление способствует более быстрому проникновению воды в мелкие поры. При этом часть нефти остается в крупных порах в виде рассеянных капель, которые удерживаются за счет капиллярных сил.

В гидрофобных пористых средах капиллярные силы препятствуют проникновению воды в поры породы. Чем меньше размер поры, тем больше эти силы. Поэтому нефть будет вытесняться в основном из крупных пор, а остаточная нефть будет сосредоточена в основном в мелких порах, а также в виде пленки на поверхности крупных пор.

Нефтяные пласты, как правило, обладают смешанной смачиваемостью. При этом предполагается, что гидрофобизация происходит в основном на поверхности крупных пор, тогда как мелкие поры остаются гидрофильными.

В этом случае капиллярные силы способствуют более быстрому проникновению воды в мелкие поры, газ будет вытеснять нефть из крупных пор. Таким образом, вытеснения нефти одновременно газом и водой будет происходить путем пропитки мелких и дренирования крупных пор. Этот механизм аналогичен процессу вытеснения нефти только водой из пород смешанной смачиваемости. Однако в случае использования двух вытесняющих агентов (воды и газа) полнота извлечения нефти должна быть выше за счет уменьшения остаточной нефтенасыщенности крупных пор. Кроме того, в зоне пласта, охваченной воздействием, растет фильтрационное сопротивление, что приводит к увеличению коэффициента охвата [2, c. 34].

Коэффициент вытеснения нефти является интегральной характеристикой водогазового воздействия на пласт. Он зависит от сумм различных факторов, определяемых как фильтрационными, свойствами пористой среды для воды, нефти и газа при их совместном и раздельном течении, так и физико-химическими взаимодействиями между водой, нефтью и газом и коллектором. Проанализируем явления определяющие механизм повышения нефтевытеснения с учетом усложнения при переходе от применения сухого углеводородного (равновесного с нефтью) газа к обогащенному (неравновесному с нефтью) и кислому. Самый простой вид водогазового воздействия - вытеснение нефти равновесным с ней газом в комбинации с водой. Несмотря на то, что коэффициент вытеснения нефти сухим газом значительно ниже такового при вытеснении водой, эффект от совместного применения воды и газа значительно превышает эффект заводнения. Как известно, существует два вида течения при фильтрации фаз, распределенных по различным поровым каналам. Ему соответствует разная насыщенность и разная проницаемость пористой среды для этих жидкостей. Второй режим определяется совместным течением двух несмешивающихся жидкостей по одним и тем же поровым каналам в виде четок или глобул одной жидкости в другой. По-видимому, причину повышения нефтеотдачи при водогазовом воздействии следует искать в том, что к режиму течения с непрерывным распределением фаз подключается четочный режим течения. Известно, что для осуществления четочного режима течения несмешивающихся жидкостей в пористой среде необходимо совершить работу для деформации поверхности движущихся частиц в порах переменного сечения.

На границе газ-вода межфазное натяжение практически равно поверхностному натяжению воды и превышает межфазное натяжение нефть-вода почти в два раза. Тогда, учитывая затрудненность существования четочного режима течения при вытеснении нефти водой при реально возможных скоростях фильтрации, вряд ли возможно четочное движение фаз газ-вода. На границе газ-нефть в пластовых условиях межфазное натяжение намного ниже по сравнению с межфазным натяжением газ-вода. В пластовых условиях межфазное натяжение на границе метана с нефтью почти на порядок меньше, чем на границе нефть-вода. Добавление промежуточных компонентов C2 в закачиваемый газ еще более уменьшает межфазное натяжение на границе нефть-газ. В таком случае создаются более благоприятные условия для течения фаз нефть-газ. Добавим к этому еще то, что при совместной фильтрации трех фаз, увеличивается сопротивление пористой среды и из-за повышения перепадов давления в зоне смеси создаются более благоприятные условия для четочного (эмульгированного) течения фаз нефть-вода.

При таких низких давлениях межфазное натяжение на границе нефть-метан имеет величину, близкую к межфазному натяжению на границе вода-нефть, что затрудняет существование четочного режима течения жидкостей. Поэтому, со снижением давления величина прироста коэффициента вытеснения при водогазовом воздействии уменьшается [3, c. 39].

Следовательно, комбинированный закачкой газа определенного компонентного состава и воды и изменением перепадов давления можно регулировать преимущественное проявление одного из режимов. Так при последовательной раздельной закачке сухого газа (метана) и воды, будет, видимо, преимущественно осуществляться режим течения с непрерывным распределением фаз по отдельным поровым каналам. При обогащении газа промежуточными компонентами и при повышении пластового давления создаются более благоприятные условия для течения жидкостей в эмульгированном состоянии. Этим, вероятно, и объясняется разница в коэффициентах вытеснения в зависимости от технологии закачки водогазовой смеси.

Пластовая нефть и неравновесный газ- сухой при высоком пластовом давлении или обогащенный, вступая в контакт друг с другом обмениваются компонентами, изменяя свои первоначальные свойства. Растворение газа в водонасыщенной нефти увеличивает объемный коэффициент нефти и снижает ее вязкость. Поэтому, наряду с усилением четочного режима течения при водогазовом воздействии, эти факторы способствуют большему приросту коэффициента вытеснения по сравнению с закачкой равновесного (сухого) газа и воды.

Сущность метода повышения нефтеотдачи пластов при сочетании закачки воды и газа высокого давления заключается в получении высокого охвата пластов, достигаемого при заводнении и высокой вытесняющей способностью углеводородного газа [4, c. 159].

Технология водогазового воздействия предназначена для повышения коэффициента нефтеизвлечения и снижения обводненности добываемой продукции. Проанализировав результаты опытов, можем сказать, что областью применения технологического процесса являются неоднородные по проницаемости пласты. Учитывая наличие в Западной Сибири значительных ресурсов углеводородных газов различного состава, представляет особый интерес изучение влияния состава закачиваемого газа на эффективность извлечения нефти.

 

Список литературы:

  1. Физические основы технологии добычи нефти, Морис Маскет Государственно Научно-Техническое издательство Нефтяной и Горно-топливной литературы, Москва 1953. -606 с.
  2. Лискевич Е.И., Гнатюк Р.А. Характеристики вытеснения пластовых жидкостей месторождения Самотлор //Тр.ин-та/Укгипронефть, 1973.-Вып-12.
  3. Пияков Г.Н., Яковлев А.П., Кудашев Р.И., Романова Е.И. Исследования эффективности водогазового воздействия. Нефтяное хозяйство, 1992, №1.-с.39
  4. Зацепин В.В. Технологические основы водогазового воздействия на пласты с трудноизвлекаемыми запасами нефти в низкопроницаемых коллекторах: дисс.…д-ра техн. наук: 25.00.17/ Зацепин Владислав Вячеславович.- К.,2017.- 354с.

sibac.info


Смотрите также